Fluoride removal from drinking water (Metlaoui, Tunisia) using untreated and treated natural clays

被引:0
|
作者
Charbti, Mariem [1 ,6 ]
Touati Hadjyoussef, Mouna [2 ]
Ouakouak, Abdelkader [3 ]
Benna Zayani, Memia [1 ,4 ]
Fortin, Claude [5 ]
机构
[1] Univ Monastir, Fac Pharm Monastir, Pharmaceut Sci Dept, Lab Chem,Galen & Pharmacol Dev Med (LR12ES09), Monastir, Tunisia
[2] Univ Carthage, Fac Sci Bizerte, Chem Dept, Lab Applicat Chem Nat Resources, Bizerte, Tunisia
[3] Univ Oued, Hydraul & Civil Engn Dept, El Oued, Algeria
[4] Univ Carthage, Higher Inst Environm Sci & Technol Borj Cedria ISS, Phys & Chem Dept, Hammam, Tunisia
[5] Inst Natl Rech Sci, Ctr Eau Terre Environm INRS ETE, Quebec City, PQ, Canada
[6] Univ Carthage, Fac Sci Bizerte, Chem Dept, Lab Applicat Chem Nat Resources, Bizerte 7021, Tunisia
关键词
biopolymer-clay composites; Box-Behnken design; thermally treated clay; water defluoridation; AQUEOUS-SOLUTION; ADSORPTION; BIOSORPTION; DEFLUORIDATION; OPTIMIZATION; EQUILIBRIUM; GROUNDWATER; MINERALS; KINETICS;
D O I
10.1002/jctb.7336
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BACKGROUND: Fluorosis is an endemic disease due to an excess of fluoride intake via drinking water. In some regions of the world, removing fluoride from drinking water is a severe problem that is still to be solved. The present study focuses on the use of a natural clay to reduce fluoride concentration in Tunisian contaminated drinking water under relevant working conditions.RESULTS: Adsorption experiments were performed in batches using a fluoride aqueous solution. The Box-Behnken model design was used to define the working conditions in which three factors were controlled: clay dosage, contact time and agitation speed. The fixed parameters were the initial fluoride concentration and water pH as observed in Metlaoui, Tunisia in 2021, and experiments were performed at room temperature. Results show that 4 g(50 mL)(-1) of clay dosage, 10 min of contact time and 280 rpm of agitation speed could provide 51% fluoride removal using an untreated natural clay. Then, various adsorbents based on this clay were synthesized (chitosan-clay, C6H17NO3Si-clay and thermally treated clays purified using different methods) and tested using the same approach. Among the adsorbents tested, the thermally treated purified clays were the most effective in removing fluoride under ambient conditions with a fluoride removal of 97.5%. Tests performed on drinking water showed that the safety fluoride concentration could be achieved without modifications of the water pH.CONCLUSIONS: The thermally treated clays investigated in this study were effective for fluoride removal under relevant conditions, which can pave the way for future field applications. (c) 2023 Society of Chemical Industry (SCI).
引用
收藏
页码:1238 / 1246
页数:9
相关论文
共 50 条
  • [11] Removal of fluoride from drinking water using a modified fly ash adsorbent
    Goswami, D
    Das, AK
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2006, 65 (01): : 77 - 79
  • [12] Removal of Fluoride from Drinking Water Using Modified Immobilized Activated Alumina
    Rafique, Aneeza
    Awan, M. Ali
    Wasti, Ayesha
    Qazi, Ishtiaq A.
    Arshad, Muhammad
    JOURNAL OF CHEMISTRY, 2013, 2013
  • [13] Removal of Fluoride from drinking water by an activated Bentonite: application to a drinking Tunisian water
    Hadjyoussef, Mouna Touati
    Jendoubi, Montassar
    Ben Amor, Mohamed
    Benna-Zayani, Memia
    MOROCCAN JOURNAL OF CHEMISTRY, 2018, 6 (01): : 135 - 147
  • [14] Removal of fluoride from drinking water by adsorption on Zr-treated laterite soil using response surface methodology
    Mandal, Barnali
    Mallick, Sattar
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2018, 95 (03) : 377 - 382
  • [15] Risk assessment of fluoride exposure in drinking water of Tunisia
    Guissouma, Wiem
    Hakami, Othman
    Al-Rajab, Abdul Jabbar
    Tarhouni, Jamila
    CHEMOSPHERE, 2017, 177 : 102 - 108
  • [16] Removal of arsenic from drinking water using modified natural zeolite
    Baskan, Meltem Bilici
    Pala, Aysegul
    DESALINATION, 2011, 281 : 396 - 403
  • [17] Removal of manganese from drinking water using natural and modified clinoptilolite
    White, D.A.
    Franklin, G.
    Bratt, G.
    Byrne, M.
    Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B, 1995, 73 (03): : 239 - 242
  • [18] Fluoride in drinking water and its removal
    Meenakshi
    Maheshwari, R. C.
    JOURNAL OF HAZARDOUS MATERIALS, 2006, 137 (01) : 456 - 463
  • [19] Defluoridation of drinking water by natural and synthetic clays
    Wang, HT
    Ji, JF
    Chen, J
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (18) : A519 - A519
  • [20] Combined electrocoagulation and electroflotation for removal of fluoride from drinking water
    Zuo, Qianhai
    Chen, Xueming
    Li, Wei
    Chen, Guohua
    JOURNAL OF HAZARDOUS MATERIALS, 2008, 159 (2-3) : 452 - 457