Multifiltering Algorithm for Enhancing the Accuracy of Individual Tree Parameter Extraction at Eucalyptus Plantations Using LiDAR Data

被引:0
|
作者
Huang, Jinjun
He, Wen
Yao, Yuefeng [1 ]
机构
[1] Guangxi Inst Bot, Guilin, Guangxi Zhuang, Peoples R China
来源
FORESTS | 2024年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
individual tree parameter; point cloud filtering algorithm; LiDAR; terrestrial laser scanning (TLS); unmanned aerial vehicles (UAV); POINT CLOUD; TERRESTRIAL LIDAR; AIRBORNE; SEGMENTATION; UAV; SYSTEMS;
D O I
10.3390/f15010081
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Accurately quantifying individual tree parameters is a critical step for assessing carbon sequestration in forest ecosystems. However, it is challenging to gather comprehensive tree point cloud data when using either unmanned aerial vehicle light detection and ranging (UAV-LiDAR) or terrestrial laser scanning (TLS) alone. Moreover, there is still limited research on the effect of point cloud filtering algorithms on the extraction of individual tree parameters from multiplatform LiDAR data. Here, we employed a multifiltering algorithm to increase the accuracy of individual tree parameter (tree height and diameter at breast height (DBH)) extraction with the fusion of TLS and UAV-LiDAR (TLS-UAV-LiDAR) data. The results showed that compared to a single filtering algorithm (improved progressive triangulated irregular network densification, IPTD, or a cloth simulation filter, CSF), the multifiltering algorithm (IPTD + CSF) improves the accuracy of tree height extraction with TLS, UAV-LiDAR, and TLS-UAV-LiDAR data (with R-2 improvements from 1% to 7%). IPTD + CSF also enhances the accuracy of DBH extraction with TLS and TLS-UAV-LiDAR. In comparison to single-platform LiDAR (TLS or UAV-LiDAR), TLS-UAV-LiDAR can compensate for the missing crown and stem information, enabling a more detailed depiction of the tree structure. The highest accuracy of individual tree parameter extraction was achieved using the multifiltering algorithm combined with TLS-UAV-LiDAR data. The multifiltering algorithm can facilitate the application of multiplatform LiDAR data and offers an accurate way to quantify individual tree parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Individual Tree Attribute Estimation and Uniformity Assessment in Fast-Growing Eucalyptus spp. Forest Plantations Using Lidar and Linear Mixed-Effects Models
    Leite, Rodrigo Vieira
    Silva, Carlos Alberto
    Mohan, Midhun
    Cardil, Adrian
    Alves de Almeida, Danilo Roberti
    Chaves e Carvalho, Samuel de Padua
    Jaafar, Wan Shafrina Wan Mohd
    Guerra-Hernandez, Juan
    Weiskittel, Aaron
    Hudak, Andrew T.
    Broadbent, Eben N.
    Prata, Gabriel
    Valbuena, Ruben
    Leite, Helio Garcia
    Taquetti, Mariana Futia
    Vieira Soares, Alvaro Augusto
    Scolforo, Henrique Ferraco
    do Amaral, Cibele Hummel
    Dalla Corte, Ana Paula
    Klauberg, Carine
    REMOTE SENSING, 2020, 12 (21) : 1 - 20
  • [22] IDENTIFICATION AND DELINEATION OF INDIVIDUAL TREE CROWNS USING LIDAR AND MULTISPECTRAL DATA FUSION
    Gulbe, Linda
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3294 - 3297
  • [23] INDIVIDUAL TREE SPECIES CLASSIFICATION USING AIRBORNE HYPERSPECTRAL IMAGERY AND LIDAR DATA
    Burai, Peter
    Beko, Laszlo
    Lenart, Csaba
    Tomor, Tamas
    Kovacs, Zoltan
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [24] IMPROVING INDIVIDUAL TREE DELINEATION USING MULRIPLE-WAVELENGTH LIDAR DATA
    Hu, Baoxin
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3182 - 3185
  • [25] Monitoring Spatiotemporal Variation of Individual Tree Biomass Using Multitemporal LiDAR Data
    Qi, Zhiyong
    Li, Shiming
    Pang, Yong
    Du, Liming
    Zhang, Haoyan
    Li, Zengyuan
    REMOTE SENSING, 2023, 15 (19)
  • [26] ACCURACY ASSESSMENT OF CROWN DELINEATION METHODS FOR THE INDIVIDUAL TREES USING LIDAR DATA
    Chang, K. T.
    Lin, C.
    Lin, Y. C.
    Liu, J. K.
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 585 - 588
  • [27] Individual tree segmentation for airborne LiDAR point cloud data using spectral clustering and supervoxel-based algorithm
    Wang W.
    Pang Y.
    Du L.
    Zhang Z.
    Liang X.
    National Remote Sensing Bulletin, 2022, 26 (08) : 1650 - 1661
  • [28] Identification of individual tree crowns from LiDAR data using a circle fitting algorithm with local maxima and minima filtering
    Chang, Anjin
    Eo, Yangdam
    Kim, Yongmin
    Kim, Yongil
    REMOTE SENSING LETTERS, 2013, 4 (01) : 30 - 38
  • [29] FUSION OF MULTITEMPORAL LIDAR DATA FOR INDIVIDUAL TREE CROWN PARAMETER ESTIMATION ON LOW DENSITY POINT CLOUDS
    Marinelli, Daniele
    Paris, Claudia
    Bruzzone, Lorenzo
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3999 - 4002
  • [30] Identification and Mapping of Eucalyptus Plantations in Remote Sensing Data Using CCDC Algorithm and Random Forest
    Zhou, Miaohang
    Han, Xujun
    Wang, Jinghan
    Ji, Xiangyu
    Zhou, Yuefei
    Liu, Meng
    FORESTS, 2024, 15 (11):