A super-localized generalized finite element method

被引:6
|
作者
Freese, Philip [1 ]
Hauck, Moritz [2 ,3 ]
Keil, Tim [4 ]
Peterseim, Daniel [5 ,6 ]
机构
[1] Hamburg Univ Technol, Inst Math, Schwarzenberg Campus 3, D-21073 Hamburg, Germany
[2] Univ Gothenburg, Dept Math Sci, S-41296 Gothenburg, Sweden
[3] Chalmers Univ Technol, S-41296 Gothenburg, Sweden
[4] Univ Munster, Inst Anal & Numer & Math Munster, Einsteinstr 62, D-48149 Munster, Germany
[5] Univ Augsburg, Inst Math, Univ Str 12a, D-86159 Augsburg, Germany
[6] Univ Augsburg, Ctr Adv Analyt & Predict Sci CAAPS, Univ Str 12a, D-86159 Augsburg, Germany
基金
欧洲研究理事会;
关键词
65N12; 65N30; HOMOGENIZATION; DECOMPOSITION; PARTITION;
D O I
10.1007/s00211-023-01386-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a novel multi-scale method for elliptic partial differential equations with arbitrarily rough coefficients. In the spirit of numerical homogenization, the method constructs problem-adapted ansatz spaces with uniform algebraic approximation rates. Localized basis functions with the same super-exponential localization properties as the recently proposed Super-Localized Orthogonal Decomposition enable an efficient implementation. The method's basis stability is enforced using a partition of unity approach. A natural extension to higher order is presented, resulting in higher approximation rates and enhanced localization properties. We perform a rigorous a priori and a posteriori error analysis and confirm our theoretical findings in a series of numerical experiments. In particular, we demonstrate the method's applicability for challenging high-contrast channeled coefficients.
引用
收藏
页码:205 / 235
页数:31
相关论文
共 50 条
  • [1] A super-localized generalized finite element method
    Philip Freese
    Moritz Hauck
    Tim Keil
    Daniel Peterseim
    Numerische Mathematik, 2024, 156 : 205 - 235
  • [2] A super-localized finite element method for inhomogeneous fourth-order singular perturbation problem
    Dai, Bin
    Zhang, Chen-Song
    APPLIED MATHEMATICS LETTERS, 2025, 166
  • [3] The generalized finite element method
    Strouboulis, T
    Copps, K
    Babuska, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (32-33) : 4081 - 4193
  • [4] Super-localized orthogonal decomposition for convection-dominated diffusion problems
    Bonizzoni, Francesca
    Freese, Philip
    Peterseim, Daniel
    BIT NUMERICAL MATHEMATICS, 2024, 64 (03)
  • [5] Field singularities and super-localized plasmons at sharp metal corners and tips
    Gorkunov, M. V.
    Sturman, B. I.
    Podivilov, E. V.
    2014 8TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS), 2014,
  • [6] SUPER-LOCALIZED ORTHOGONAL DECOMPOSITION FOR HIGH-FREQUENCY HELMHOLTZ PROBLEMS
    Freese, Philip
    Hauck, Moritz
    Peterseim, Daniel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (04): : A2377 - A2397
  • [7] Superconvergence in the generalized finite element method
    Ivo Babuška
    Uday Banerjee
    John E. Osborn
    Numerische Mathematik, 2007, 107 : 353 - 395
  • [8] Superconvergence in the generalized finite element method
    Babuska, Ivo
    Banerjee, Uday
    Osborn, John E.
    NUMERISCHE MATHEMATIK, 2007, 107 (03) : 353 - 395
  • [9] Condensed generalized finite element method
    Zhang, Qinghui
    Cui, Cu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 1847 - 1868
  • [10] Topology Optimization - unconventional approaches using the Generalized Finite Element Method and the Stable Generalized Finite Element Method
    de Arruda, Lucas Sardinha
    Martim, Matheus Baarini
    Gois, Wesley
    de Lima, Cicero Ribeiro
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2022, 19 (03):