A human-interpretable machine learning pipeline based on ultrasound to support leiomyosarcoma diagnosis

被引:7
|
作者
Lombardi, Angela [1 ]
Arezzo, Francesca [2 ]
Di Sciascio, Eugenio [1 ]
Ardito, Carmelo [3 ]
Mongelli, Michele [4 ]
Di Lillo, Nicola [4 ]
Fascilla, Fabiana Divina [5 ]
Silvestris, Erica [2 ]
Kardhashi, Anila [2 ]
Putino, Carmela [4 ]
Cazzolla, Ambrogio [2 ]
Loizzi, Vera [2 ,6 ]
Cazzato, Gerardo [7 ]
Cormio, Gennaro [2 ,6 ]
Di Noia, Tommaso [1 ]
机构
[1] Politecn Bari, Dept Elect & Informat Engn DEI, Bari, Italy
[2] IRCCS Ist Tumori Giovanni Paolo II, Gynecol Oncol Unit, Interdisciplinar Dept Med, Bari, Italy
[3] LUM Giuseppe Degennaro Univ, Dept Engn, Casamassima, Bari, Italy
[4] Univ Bari Aldo Moro, Dept Biomed Sci & Human Oncol, Obstet & Gynecol Unit, Bari, Italy
[5] Di Venere Hosp, Obstet & Gynecol Unit, Bari, Italy
[6] Univ Bari Aldo Moro, Interdisciplinar Dept Med, Bari, Italy
[7] Univ Bari Aldo Moro, Dept Emergency & Organ Transplantat DETO, Sect Pathol, Bari, Italy
关键词
Human-centered AI; Machine learning; eXplainable artificial intelligence; Interpretability; Ultrasound; Leiomyosarcoma; CAD; DIFFERENTIAL-DIAGNOSIS; UTERINE SARCOMA; MORCELLATION; LEIOMYOMA; EXPLANATIONS; REGRESSION; SELECTION; OUTCOMES; IMPACT; CANCER;
D O I
10.1016/j.artmed.2023.102697
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The preoperative evaluation of myometrial tumors is essential to avoid delayed treatment and to establish the appropriate surgical approach. Specifically, the differential diagnosis of leiomyosarcoma (LMS) is particularly challenging due to the overlapping of clinical, laboratory and ultrasound features between fibroids and LMS. In this work, we present a human-interpretable machine learning (ML) pipeline to support the preoperative differential diagnosis of LMS from leiomyomas, based on both clinical data and gynecological ultrasound assessment of 68 patients (8 with LMS diagnosis). The pipeline provides the following novel contributions: (i) end-users have been involved both in the definition of the ML tasks and in the evaluation of the overall approach; (ii) clinical specialists get a full understanding of both the decision-making mechanisms of the ML algorithms and the impact of the features on each automatic decision. Moreover, the proposed pipeline addresses some of the problems concerning both the imbalance of the two classes by analyzing and selecting the best combination of the synthetic oversampling strategy of the minority class and the classification algorithm among different choices, and the explainability of the features at global and local levels. The results show very high performance of the best strategy (AUC = 0.99, F1 = 0.87) and the strong and stable impact of two ultrasound-based features (i.e., tumor borders and consistency of the lesions). Furthermore, the SHAP algorithm was exploited to quantify the impact of the features at the local level and a specific module was developed to provide a template-based natural language (NL) translation of the explanations for enhancing their interpretability and fostering the use of ML in the clinical setting.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Diagnosis of Renal Diseases Based on Machine Learning Methods Using Ultrasound Images
    Li, Guanghan
    Liu, Jian
    Wu, Jingping
    Tian, Yan
    Ma, Liyong
    Liu, Yuejun
    Zhang, Bo
    Mou, Shan
    Zheng, Min
    CURRENT MEDICAL IMAGING, 2021, 17 (03) : 425 - 432
  • [42] Interpretable Clinical Decision-Making Application for Etiological Diagnosis of Ventricular Tachycardia Based on Machine Learning
    Wang, Min
    Hu, Zhao
    Wang, Ziyang
    Chen, Haoran
    Xu, Xiaowei
    Zheng, Si
    Yao, Yan
    Li, Jiao
    DIAGNOSTICS, 2024, 14 (20)
  • [43] Clinical Decision Support through Interpretable Machine Learning in Head and Neck Cancer
    Thomas, T. Vengaloor
    Wang, Y.
    Duggar, W. N.
    Roberts, P. R.
    Gatewood, R. T.
    Vijayakumar, S.
    Bian, L.
    Wang, H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E106 - E107
  • [44] A Machine Learning Pipeline for Measurement of Arterial Stiffness in A-Mode Ultrasound
    Sahani, Ashish Kumar
    Srivastava, Divyansh
    Sivaprakasam, Mohanasankar
    Joseph, Jayaraj
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (01) : 106 - 113
  • [45] Accurate band gap prediction based on an interpretable ?-machine learning
    Zhang, Lingyao
    Su, Tianhao
    Li, Musen
    Jia, Fanhao
    Hu, Shuobo
    Zhang, Peihong
    Ren, Wei
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [46] Prediction of the Fatigue Strength of Steel Based on Interpretable Machine Learning
    Liu, Chengcheng
    Wang, Xuandong
    Cai, Weidong
    Yang, Jiahui
    Su, Hang
    MATERIALS, 2023, 16 (23)
  • [47] Towards Interpretable Machine-Learning-Based DDoS Detection
    Zhou Q.
    Li R.
    Xu L.
    Nallanathan A.
    Yang J.
    Fu A.
    SN Computer Science, 5 (1)
  • [48] Feature mining for thermoelectric materials based on interpretable machine learning
    Liu, Yiyu
    Mu, Zilong
    Hong, Peichao
    Yang, Yun
    Lin, Changxu
    NANOSCALE, 2025, 17 (04) : 2200 - 2214
  • [49] Explainable Human-Machine Teaming using Model Checking and Interpretable Machine Learning
    Bersani, Marcello M.
    Camilli, Matteo
    Lestingi, Livia
    Mirandola, Raffaela
    Rossi, Matteo
    2023 IEEE/ACM 11TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING, FORMALISE, 2023, : 18 - 28
  • [50] OnML: an ontology-based approach for interpretable machine learning
    Ayranci, Pelin
    Lai, Phung
    Phan, Nhathai
    Hu, Han
    Kolinowski, Alexander
    Newman, David
    Dou, Deijing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 770 - 793