Review of Rydberg Spectral Line Formation in Plasmas

被引:0
|
作者
Letunov, Andrey Yu. [1 ,2 ]
Lisitsa, Valery S. [2 ,3 ]
机构
[1] FSUE RFNC VNIITF Named Academ E I Zababakhin, Snezhinsk 456770, Russia
[2] Natl Res Nucl Univ MEPhI, Inst Laser & Plasma Technol, Moscow 115409, Russia
[3] Kurchatov Inst, Natl Res Ctr, Dept Plasma Phys, Moscow 123182, Russia
关键词
Stark-Zeeman effect; Rydberg atom; plasma spectroscopy; LASER-INDUCED FLUORESCENCE; RADIATIVE CASCADE; HYDROGEN-ATOM; SHAPES; MODEL; TRANSITIONS; PROFILES; DIVERTOR; TABLE;
D O I
10.3390/atoms11100133
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The present review is dedicated to the problem of an array of transitions between highly-excited atomic levels. Hydrogen atoms and hydrogen-like ions in plasmas are considered here. The presented methods focus on calculation of spectral line shapes. Fast and simple methods of universal ionic profile calculation for the Hn alpha (Delta n=1) and Hn beta (Delta n=2) spectral lines are demonstrated. The universal dipole matrix elements formulas for the Hn alpha and Hn beta transitions are presented. A fast method for spectral line shape calculations in the presence of an external magnetic field using the formulas for universal dipole matrix elements is proposed. This approach accounts for the Doppler and Stark-Zeeman broadening mechanisms. Ion dynamics effects are treated via the frequency fluctuation model. The accuracy of the presented model is discussed. A comparison of this approach with experimental data and the results of molecular dynamics simulation is demonstrated. The kinetics equation for the populations of highly-excited ionic states is solved in the parabolic representation. The population source associated with dielectronic recombination is considered.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Penetrating collisions in hydrogen spectral line broadening by plasmas
    Iglesias, Carlos A.
    HIGH ENERGY DENSITY PHYSICS, 2020, 35
  • [32] Ultracold plasmas and Rydberg gases
    Bergeson, S
    Killian, T
    PHYSICS WORLD, 2003, 16 (02) : 37 - 41
  • [33] Rydberg atom formation in ultracold plasmas: Small energy transfer with large consequences
    Pohl, T.
    Vrinceanu, D.
    Sadeghpour, H. R.
    PHYSICAL REVIEW LETTERS, 2008, 100 (22)
  • [34] Rydberg atom formation in ultracold plasmas: non-equilibrium dynamics of recombination
    Vrinceanu, D.
    Sadeghpour, H. R.
    Pohl, T.
    XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS, 2009, 194
  • [35] Hydrogen line formation in dense magnetized plasmas
    Brillant, S
    Mathys, G
    Stehle, C
    ASTRONOMY & ASTROPHYSICS, 1998, 339 (01) : 286 - 297
  • [36] SPECTRAL-LINE SHAPES OF AUTOIONIZING RYDBERG SERIES OF SN AND PB
    UEDA, K
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1987, 4 (07) : 1136 - 1137
  • [37] Spectral Line Profiles in Magnetized Plasmas: Stark Effect in Motion
    Touati, K.
    Chenini, K.
    Meftah, M. T.
    CANADIAN JOURNAL OF PHYSICS, 2018, 96 (03) : 241 - 248
  • [38] Computer simulations of hydrogen spectral line shapes in dense plasmas
    Olchawa, W
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2002, 74 (04): : 417 - 429
  • [39] The spectral line asymmetry of the Doppler effect n relativistic plasmas
    Gossa, H.
    Meftah, M. T.
    Chenini, K.
    Zenkhri, D. E.
    Amieur, B.
    Guerrida, H.
    EPL, 2022, 139 (02)
  • [40] CORRELATION FUNCTION AND ELECTRONIC SPECTRAL LINE BROADENING IN RELATIVISTIC PLASMAS
    Douis, S.
    Meftah, M. T.
    SERBIAN ASTRONOMICAL JOURNAL, 2013, 186 : 15 - 23