Joint learning of feature and topology for multi-view graph convolutional network

被引:4
|
作者
Chen, Yuhong [1 ,2 ]
Wu, Zhihao [1 ,2 ]
Chen, Zhaoliang [1 ,2 ]
Dong, Mianxiong [3 ]
Wang, Shiping [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent Inf, Fuzhou 350116, Peoples R China
[3] Muroran Inst Technol, Dept Sci & Informat, Muroran 0508585, Japan
基金
中国国家自然科学基金;
关键词
Multi-view learning; Semi-supervised classification; Graph convolution network; Feature and topology fusion;
D O I
10.1016/j.neunet.2023.09.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional network has been extensively employed in semi-supervised classification tasks. Although some studies have attempted to leverage graph convolutional networks to explore multi-view data, they mostly consider the fusion of feature and topology individually, leading to the underutilization of the consistency and complementarity of multi-view data. In this paper, we propose an end-to-end joint fusion framework that aims to simultaneously conduct a consistent feature integration and an adaptive topology adjustment. Specifically, to capture the feature consistency, we construct a deep matrix decomposition module, which maps data from different views onto a feature space obtaining a consistent feature representation. Moreover, we design a more flexible graph convolution that allows to adaptively learn a more robust topology. A dynamic topology can greatly reduce the influence of unreliable information, which acquires a more adaptive representation. As a result, our method jointly designs an effective feature fusion module and a topology adjustment module, and lets these two modules mutually enhance each other. It takes full advantage of the consistency and complementarity to better capture the more intrinsic information. The experimental results indicate that our method surpasses state-of-the-art semi-supervised classification methods.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 50 条
  • [1] Learnable Graph Convolutional Network and Feature Fusion for Multi-view Learning
    Chen, Zhaoliang
    Fu, Lele
    Yao, Jie
    Guo, Wenzhong
    Plant, Claudia
    Wang, Shiping
    arXiv, 2022,
  • [2] Learnable graph convolutional network and feature fusion for multi-view learning
    Chen, Zhaoliang
    Fu, Lele
    Yao, Jie
    Guo, Wenzhong
    Plant, Claudia
    Wang, Shiping
    INFORMATION FUSION, 2023, 95 : 109 - 119
  • [3] Joint Multi-View Unsupervised Feature Selection and Graph Learning
    Fang, Si-Guo
    Huang, Dong
    Wang, Chang-Dong
    Tang, Yong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 16 - 31
  • [4] Multi-scale graph diffusion convolutional network for multi-view learning
    Shiping Wang
    Jiacheng Li
    Yuhong Chen
    Zhihao Wu
    Aiping Huang
    Le Zhang
    Artificial Intelligence Review, 58 (6)
  • [5] Multi-View Graph Convolutional Network for Multimedia Recommendation
    Yu, Penghang
    Tan, Zhiyi
    Lu, Guanming
    Bao, Bing-Kun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6576 - 6585
  • [6] Revisiting multi-view learning: A perspective of implicitly heterogeneous Graph Convolutional Network
    Zou, Ying
    Fang, Zihan
    Wu, Zhihao
    Zheng, Chenghui
    Wang, Shiping
    NEURAL NETWORKS, 2024, 169 : 496 - 505
  • [7] Interpretable Graph Convolutional Network for Multi-View Semi-Supervised Learning
    Wu, Zhihao
    Lin, Xincan
    Lin, Zhenghong
    Chen, Zhaoliang
    Bai, Yang
    Wang, Shiping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8593 - 8606
  • [8] A multi-view mask contrastive learning graph convolutional neural network for age estimation
    Zhang, Yiping
    Shou, Yuntao
    Meng, Tao
    Ai, Wei
    Li, Keqin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (11) : 7137 - 7162
  • [9] Dual Graph-Regularized Multi-View Feature Learning
    Chen, Zhikui
    Qiu, Xiru
    Zhao, Liang
    Du, Jianing
    IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2018, : 266 - 273
  • [10] Unsupervised multi-view feature extraction with dynamic graph learning
    Shi, Dan
    Zhu, Lei
    Cheng, Zhiyong
    Li, Zhihui
    Zhang, Huaxiang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 256 - 264