Learnable Graph Convolutional Network and Feature Fusion for Multi-view Learning

被引:0
|
作者
Chen, Zhaoliang [1 ,2 ]
Fu, Lele [1 ,2 ]
Yao, Jie [1 ,2 ]
Guo, Wenzhong [1 ,2 ]
Plant, Claudia [3 ,4 ]
Wang, Shiping [1 ,2 ]
机构
[1] College of Computer and Data Science, Fuzhou University, Fuzhou,350116, China
[2] Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou,350116, China
[3] Faculty of Computer Science, University of Vienna, Vienna,1090, Austria
[4] Research Network Data Science @ Uni Vienna, University of Vienna, Vienna,1090, Austria
来源
arXiv | 2022年
关键词
Activation functions - Convolutional networks - Features fusions - Graph convolutional network - Graph information - Information fusion with deep learning - Multi-view datum - Multi-view learning - Network fusion - Semisupervised classification (SSC);
D O I
暂无
中图分类号
学科分类号
摘要
51
引用
收藏
相关论文
共 50 条
  • [1] Learnable graph convolutional network and feature fusion for multi-view learning
    Chen, Zhaoliang
    Fu, Lele
    Yao, Jie
    Guo, Wenzhong
    Plant, Claudia
    Wang, Shiping
    INFORMATION FUSION, 2023, 95 : 109 - 119
  • [2] Joint learning of feature and topology for multi-view graph convolutional network
    Chen, Yuhong
    Wu, Zhihao
    Chen, Zhaoliang
    Dong, Mianxiong
    Wang, Shiping
    NEURAL NETWORKS, 2023, 168 : 161 - 170
  • [3] Multi-scale graph diffusion convolutional network for multi-view learning
    Shiping Wang
    Jiacheng Li
    Yuhong Chen
    Zhihao Wu
    Aiping Huang
    Le Zhang
    Artificial Intelligence Review, 58 (6)
  • [4] Learnable Graph Filter for Multi-view Clustering
    Zhou, Peng
    Du, Liang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3089 - 3098
  • [5] Multi-View Graph Convolutional Network for Multimedia Recommendation
    Yu, Penghang
    Tan, Zhiyi
    Lu, Guanming
    Bao, Bing-Kun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6576 - 6585
  • [6] Revisiting multi-view learning: A perspective of implicitly heterogeneous Graph Convolutional Network
    Zou, Ying
    Fang, Zihan
    Wu, Zhihao
    Zheng, Chenghui
    Wang, Shiping
    NEURAL NETWORKS, 2024, 169 : 496 - 505
  • [7] Interpretable Graph Convolutional Network for Multi-View Semi-Supervised Learning
    Wu, Zhihao
    Lin, Xincan
    Lin, Zhenghong
    Chen, Zhaoliang
    Bai, Yang
    Wang, Shiping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8593 - 8606
  • [8] A multi-view mask contrastive learning graph convolutional neural network for age estimation
    Zhang, Yiping
    Shou, Yuntao
    Meng, Tao
    Ai, Wei
    Li, Keqin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (11) : 7137 - 7162
  • [9] Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network
    Shang, Zhiwu
    Liu, Hu
    Zhang, Baoren
    Feng, Zehua
    Li, Wanxiang
    INSIGHT, 2023, 65 (10) : 559 - 569
  • [10] Dual Graph-Regularized Multi-View Feature Learning
    Chen, Zhikui
    Qiu, Xiru
    Zhao, Liang
    Du, Jianing
    IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2018, : 266 - 273