Nanoindentation study of 6-phase zirconium hydride using the crystal plasticity model

被引:19
|
作者
Zan, X. D. [1 ]
Guo, X. [1 ,2 ]
Weng, G. J. [3 ]
Chen, G. [4 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Tianjin 300354, Peoples R China
[2] Tianjin Key Lab Nonlinear Dynam & Control, Tianjin 300072, Peoples R China
[3] Rutgers State Univ, Dept Mech & Aerosp Engn, New Brunswick, NJ 08903 USA
[4] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Crystal plasticity; Nanoindentation; Size effect; Orientation effect; 6-hydride; STRAIN-GRADIENT; MECHANICAL-PROPERTIES; DEFORMATION-BEHAVIOR; NANO-INDENTATION; DELTA-HYDRIDES; SIZE; MICROSTRUCTURE; ZIRCALOY-4; HYDROGEN; HARDNESS;
D O I
10.1016/j.ijplas.2023.103675
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Zirconium hydride precipitation degrades the fracture toughness of nuclear reactor fuel cladding tube. Due to the difficulty of experiment, deep understanding on mechanical properties of zirconium hydride via numerical approaches is in a great need. To study the mechanical properties of zirconium hydride, the crystal plasticity finite element model considering geometrically necessary dislocations evolution is used to simulate the nanoindentation deformation behavior of single-crystal 6-hydride. The parameters in the crystal plasticity model are calibrated by Young's modulus along different crystallographic orientations and experimental stress-strain data at different strain rates. The predicted polycrystalline Young's modulus, Poisson's ratio, and nanoindentation hardness are in good agreement with the experimental results. The simulation results show that the nanoindentation hardness strongly depends on the indentation depth when it is smaller than 500 nm. Furthermore, the effects of crystallographic orientation and zirconium matrix on the indentation results are also studied. We find that the nanoindentation hardness of 6-hydride is slightly orientation dependent. For smaller hydride size or larger indentation depth, the surrounding zirconium matrix undergoes plastic deformation, which leads to a significant underestimate of the nanoindentation hardness of the hydride.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A FURTHER STUDY ON CLOSED-NET-DIAGRAMS OF BINARY 6-PHASE (N+4) MULTISYSTEMS
    GUO, QT
    SCIENTIA SINICA, 1981, 24 (05): : 678 - 683
  • [42] Investigation of the Evolution of Plastic Anisotropy and Pile-up of Al Single Crystal in Nanoindentation Using Different Crystal Plasticity Models
    Lin, Hui
    Shao, Lidong
    Lv, Lin
    Bao, Jiusheng
    MATERIALS TRANSACTIONS, 2024, 65 (05) : 494 - 501
  • [43] Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods
    Berry, Joel
    Rottler, Joerg
    Sinclair, Chad W.
    Provatas, Nikolas
    PHYSICAL REVIEW B, 2015, 92 (13):
  • [44] Study on synthesis and properties of high crystal quality α phase aluminum hydride
    Zhu, Zhao-Yang
    Ka, Heng-Xin
    Zhang, Su-Min
    Ma, Jing-Fen
    Wang, Su-Fang
    Wang, Hong-Zhi
    Binggong Xuebao/Acta Armamentarii, 2012, 33 (SUPPL2): : 201 - 204
  • [45] Phase field crystal study of deformation and plasticity in nanocrystalline materials
    Stefanovic, Peter
    Haataja, Mikko
    Provatas, Nikolas
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [46] A coupled ductile fracture phase-field model for crystal plasticity
    Padilla, Carlos Alberto Hernandez
    Markert, Bernd
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2017, 29 (04) : 1017 - 1026
  • [47] A hybrid crystal plasticity and phase transformation model for high carbon steel
    E. S. Alley
    R. W. Neu
    Computational Mechanics, 2013, 52 : 237 - 255
  • [48] A hybrid crystal plasticity and phase transformation model for high carbon steel
    Alley, E. S.
    Neu, R. W.
    COMPUTATIONAL MECHANICS, 2013, 52 (02) : 237 - 255
  • [49] A coupled ductile fracture phase-field model for crystal plasticity
    Carlos Alberto Hernandez Padilla
    Bernd Markert
    Continuum Mechanics and Thermodynamics, 2017, 29 : 1017 - 1026
  • [50] Intermittent Dislocation Density Fluctuations in Crystal Plasticity from a Phase-Field Crystal Model
    Tarp, Jens M.
    Angheluta, Luiza
    Mathiesen, Joachim
    Goldenfeld, Nigel
    PHYSICAL REVIEW LETTERS, 2014, 113 (26)