Optimizing fuel economy and durability of hybrid fuel cell electric vehicles using deep reinforcement learning-based energy management systems

被引:19
|
作者
Hu, Haowen [1 ]
Yuan, Wei-Wei [2 ]
Su, Minghang [1 ]
Ou, Kai [1 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
[2] Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent Co, Fuzhou 350108, Peoples R China
关键词
Energy management strategy (EMS); Deep reinforcement learning; Fuel economy; Battery degradation; Fuel cell degradation; Overall cost; STRATEGY; OPTIMIZATION; BATTERY; DEGRADATION;
D O I
10.1016/j.enconman.2023.117288
中图分类号
O414.1 [热力学];
学科分类号
摘要
An effective energy management strategy (EMS) is crucial for the reliable operation of fuel cell hybrid electric vehicles (FCHEVs). This study proposes a power distribution optimization strategy for FCHEVs that leverages deep reinforcement learning (DRL) and Pontryagin's minimum principle (PMP). The DRL algorithm effectively balances fuel economy, battery durability, and fuel cell durability objectives. The degradation mechanisms of battery and fuel cell under extreme working conditions are considered in the PMP optimization. A comprehensive evaluation framework is established with degradation and energy consumption models to serve as a reward for deep reinforcement learning to balance fuel economy and power sources' lifetime. Simulation results show that the proposed EMS framework reduces FC degradation by 18.4% and battery degradation by 71.1% compared to traditional PMP-based EMS under the NEDC driving condition. Hardware-in-the-loop (HIL) testing demonstrates that the proposed EMS framework has the potential for real-time application, with an average relative error between experiment and simulation of approximately 0.0203. This research highlights the significance of the proposed EMS framework in ensuring the reliable operation of FCHEVs with enhanced performance and reduced cost.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Visual Detection and Deep Reinforcement Learning-Based Car Following and Energy Management for Hybrid Electric Vehicles
    Tang, Xiaolin
    Chen, Jiaxin
    Yang, Kai
    Toyoda, Mitsuru
    Liu, Teng
    Hu, Xiaosong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (02) : 2501 - 2515
  • [32] Deep Reinforcement Learning-based Building Energy Management using Electric Vehicles for Demand Response
    Kang, Daeyoung
    Yoon, Seunghyun
    Lim, Hyuk
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 375 - 377
  • [33] Control and Management Design of Hybrid Energy Systems for Fuel Cell Electric Vehicles
    Lu, Bingbing
    Ma, Jianxin
    International Journal of Vehicle Structures and Systems, 2024, 16 (03) : 343 - 349
  • [34] Online energy management strategy of fuel cell hybrid electric vehicles based on rule learning
    Liu, Yonggang
    Liu, Junjun
    Qin, Datong
    Li, Guang
    Chen, Zheng
    Zhang, Yi
    JOURNAL OF CLEANER PRODUCTION, 2020, 260
  • [35] Optimizing fuel economy of fuel cell hybrid electric vehicle based on energy management strategy with integrated rapid thermal regulation
    Tian, Xiaolong
    Tao, Fazhan
    Fu, Zhumu
    Zhu, Longlong
    Sun, Haochen
    Song, Shuzhong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [36] Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning
    Tang, Xiaolin
    Zhou, Haitao
    Wang, Feng
    Wang, Weida
    Lin, Xianke
    ENERGY, 2022, 238
  • [37] A Long-term Energy Management Strategy for Fuel Cell Electric Vehicles Using Reinforcement Learning
    Zhou, Y. F.
    Huang, L. J.
    Sun, X. X.
    Li, L. H.
    Lian, J.
    FUEL CELLS, 2020, 20 (06) : 753 - 761
  • [38] A reinforcement learning energy management strategy for fuel cell hybrid electric vehicles considering driving condition classification
    Kang, Xu
    Wang, Yujie
    Chen, Zonghai
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 38
  • [39] Energy management with adaptive moving average filter and deep deterministic policy gradient reinforcement learning for fuel cell hybrid electric vehicles
    Zhao, Yinghua
    Huang, Siqi
    Wang, Xiaoyu
    Shi, Jingwu
    Yao, Shouwen
    Energy, 2024, 312
  • [40] Energy management strategy for fuel cell electric vehicles based on scalable reinforcement learning in novel environment
    Wang, Da
    Mei, Lei
    Xiao, Feng
    Song, Chuanxue
    Qi, Chunyang
    Song, Shixin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 668 - 678