Interior-point algorithm for symmetric cone horizontal linear complementarity problems based on a new class of algebraically equivalent transformations

被引:0
|
作者
Darvay, Zsolt [1 ,2 ]
Rigo, Petra Renata [3 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca, Romania
[2] Corvinus Univ Budapest, Corvinus Inst Adv Stud, Budapest, Hungary
[3] Corvinus Univ Budapest, Budapest, Hungary
关键词
Horizontal linear complementarity problem; Cartesian product of symmetric cones; New class of AET functions; Interior-point algorithms; ENTROPY;
D O I
10.1007/s11590-023-02020-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We generalize a primal-dual interior-point algorithm (IPA) proposed recently in (Illes T, Rigo PR, Torok R Unified approach of primal-dual interior-point algo-rithms for a new class of AET functions, 2022) to P-*(x)-horizontal linear complementarity problems (LCPs) over Cartesian product of symmetric cones. The algorithm is based on the algebraic equivalent transformation (AET) technique with a new class of AET functions. The new class is a modification of the class of AET functions proposed in (Illes T, Rigo PR, Torok R Unified approach of primal-dual interior-point algorithms for a new class of AET functions, 2022) where only two conditions are used as opposed to three used in (Illes T, Rigo PR, Torok R Unified approach of primal-dual interior-point algorithms for a new class of AET functions, 2022). Furthermore, the algorithm is a feasible algorithm that uses full Nesterov-Todd steps, hence, no calculation of step-size is necessary. Nevertheless, we prove that the proposed IPA has the iteration bound that matches the best known iteration bound for IPAs solving these types of problems.
引用
收藏
页码:615 / 634
页数:20
相关论文
共 50 条
  • [41] Kernel-Based Interior-Point Methods for Cartesian P*(κ)-Linear Complementarity Problems over Symmetric Cones
    Lesaja, G.
    CROATIAN OPERATIONAL RESEARCH REVIEW (CRORR), VOL 2, 2011, 2 : 23 - 32
  • [42] A projected-gradient interior-point algorithm for complementarity problems
    Andreani, Roberto
    Judice, Joaquim J.
    Martinez, Jose Mario
    Patricio, Joao
    NUMERICAL ALGORITHMS, 2011, 57 (04) : 457 - 485
  • [43] Interior-point iterative algorithm for the mix-complementarity problems
    Ma, Changfeng
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 2000, 17 (01): : 50 - 56
  • [44] A new class of complementarity functions for symmetric cone complementarity problems
    Yuan Min Li
    Xing Tao Wang
    De Yun Wei
    Optimization Letters, 2011, 5 : 247 - 257
  • [45] A new class of complementarity functions for symmetric cone complementarity problems
    Li, Yuan Min
    Wang, Xing Tao
    Wei, De Yun
    OPTIMIZATION LETTERS, 2011, 5 (02) : 247 - 257
  • [46] A New Full-Newton Step O(n) Infeasible Interior-Point Algorithm for P-* (kappa)-horizontal Linear Complementarity Problems
    Asadi, Soodabeh
    Mansouri, Hossein
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2014, 22 (01) : 37 - 61
  • [47] A predictor-corrector interior-point algorithm for P.(Κ)-weighted linear complementarity problems
    Zhang, Lu
    Chi, Xiaoni
    Zhang, Suobin
    Yang, Yuping
    AIMS MATHEMATICS, 2023, 8 (04): : 9212 - 9229
  • [48] NEW INTERIOR-POINT METHODS FOR P*(κ)-NONLINEAR COMPLEMENTARITY PROBLEMS
    Cho, You-Young
    Cho, Gyeong-Mi
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (05) : 901 - 917
  • [49] An infeasible interior-point algorithm with full-Newton steps for P-*(kappa) horizontal linear complementarity problems based on a kernel function
    Asadi, S.
    Zangiabadi, M.
    Mansouri, H.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2016, 50 (1-2) : 15 - 37
  • [50] A full-Newton step feasible interior-point algorithm for P*(κ)-linear complementarity problems
    Wang, G. Q.
    Yu, C. J.
    Teo, K. L.
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (01) : 81 - 99