Critical and injective modules over skew polynomial rings

被引:0
|
作者
Brown, Ken [1 ]
Carvalho, Paula A. A. B. [2 ]
Matczuk, Jerzy [3 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8SQ, Scotland
[2] Univ Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
[3] Univ Warsaw, Inst Math, Banacha 2, PL-02097 Warsaw, Poland
关键词
Injective module; Noetherian ring; Simple module; Skew polynomial ring; EXTENSIONS;
D O I
10.1016/j.jpaa.2023.107441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative local k-algebra of Krull dimension one, where k is a field. Let & alpha; be a k-algebra automorphism of R, and define S to be the skew polynomial algebra R[& theta;; & alpha;]. We offer, under some additional assumptions on R, a criterion for S to have injective hulls of all simple S-modules locally Artinian -that is, for S to satisfy property (O). It is easy and well known that if & alpha; is of finite order, then S has this property, but in order to get the criterion when & alpha; has infinite order we found it necessary to classify all cyclic (Krull) critical S-modules in this case, a result which may be of independent interest. With the help of the above we show that S ⠂ = k[[X]][& theta;, & alpha;] satisfies (o) for all k-algebra automorphisms & alpha; of k[[X]].& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条