Coupled systems with quasi-periodic and chaotic dynamics

被引:7
|
作者
Kuznetsov, Alexander P. [1 ]
Sedova, Yuliya, V [1 ]
Stankevich, Nataliya, V [1 ,2 ]
机构
[1] Russian Acad Sci, Kotelnikovs Inst Radioengn & Elect, Saratov Branch, Zelenaya 38, Saratov 410019, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Topol Methods Dynam, Bolshaya Pecherskaya Str 25-12, Nizhnii Novgorod 603155, Russia
关键词
Quasi-periodic oscillations; Dynamical chaos; Ro center dot ssler system; Lyapunov exponents; chaos with additional zero Lyapunov exponents; SYNCHRONIZATION; OSCILLATIONS; BIFURCATIONS;
D O I
10.1016/j.chaos.2023.113278
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The interaction of a system with quasi-periodic autonomous dynamics and a chaotic Ro center dot ssler system is studied. We have shown that with the growth of the coupling, regimes of two-frequency and three-frequency quasipe-riodicity, a periodic regime and a regime of oscillation death sequentially arise. With a small coupling strength, doubling bifurcations of three-frequency tori are observed in the system. A chaotic regime, characterized by two additional zero Lyapunov exponents in spectrum, is revealed. Two-parameter Lyapunov exponent analysis and bifurcation analysis are presented. A new bifurcation scenario of transition from the regime of oscillation death to quasi-periodicity in coupled systems is described.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] CHAOTIC RABI OSCILLATIONS UNDER QUASI-PERIODIC PERTURBATION
    POMEAU, Y
    DORIZZI, B
    GRAMMATICOS, B
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (07) : 681 - 684
  • [22] Periodic, quasi-periodic, chaotic waves and solitonic structures of coupled Benjamin-Bona-Mahony-KdV system
    Hussain, Amjad
    Abbas, Naseem
    [J]. Physica Scripta, 2024, 99 (12)
  • [23] QUASI-PERIODIC SOLUTIONS OF THE LOTKA-VOLTERRA COMPETITION SYSTEMS WITH QUASI-PERIODIC PERTURBATIONS
    Liu, Qihuai
    Qian, Dingbian
    Wang, Zhiguo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (05): : 1537 - 1550
  • [24] PERIODIC, QUASI-PERIODIC, AND CHAOTIC BEHAVIOR IN A NONLINEAR TOY CLIMATE MODEL
    POSMENTIER, ES
    [J]. ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1990, 8 (11): : 781 - 790
  • [25] Transitional Dynamics and Quasi-Periodic Solution Observed in Two Asymmetrical Coupled Oscillators
    Shimizu, Kuniyasu
    Endo, Tetsuro
    Yoshimura, Takuya
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2009, E92A (01) : 270 - 278
  • [26] Quasi-periodic states in coupled rings of cells
    Antoneli, Fernando
    Dias, Ana Paula S.
    Pinto, Carla M. A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) : 1048 - 1062
  • [27] PERIODIC AND QUASI-PERIODIC REGIMES IN SELF-COUPLED LASERS
    LI, RD
    MANDEL, P
    ERNEUX, T
    [J]. PHYSICAL REVIEW A, 1990, 41 (09): : 5117 - 5126
  • [28] QUASI-PERIODIC MOTIONS OF VORTEX SYSTEMS
    KHANIN, KM
    [J]. PHYSICA D, 1982, 4 (02): : 261 - 269
  • [29] Quasi-periodic bifurcations in reversible systems
    Heinz Hanßmann
    [J]. Regular and Chaotic Dynamics, 2011, 16 : 51 - 60
  • [30] On the convergence of dynamic quasi-periodic systems
    Strekopytov, S. A.
    Strekopytova, M., V
    [J]. VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2022, 18 (01): : 79 - 86