Temperature-dependent structure and performance evolution of ?water-in-salt? electrolyte for supercapacitor

被引:29
|
作者
Zhang, Qingnuan [1 ,2 ]
Xu, Shan [3 ]
Wang, Yue [4 ]
Dou, Qingyun [1 ]
Sun, Yinglun [5 ]
Yan, Xingbin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[2] Beijing Inst Technol, Sch Chem & Chem Engn, Beijing 100081, Peoples R China
[3] Guangdong Acad Sci, Ctr Ind Anal & Testing, Guangzhou 510651, Peoples R China
[4] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[5] Shandong First Med Univ & Shandong Acad Med Sci, Coll Radiol, Med Engn & Technol Res Ctr, Tai An 271016, Peoples R China
基金
国家重点研发计划;
关键词
Water-in-salt electrolyte; Temperature-dependent performance; Raman spectroscopy; Supercapacitor; IMPACT; SHAPE; SAFE;
D O I
10.1016/j.ensm.2022.11.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
"Water-in-salt" (WIS) electrolytes exhibit enlarged electrochemical stability windows compared to conventional dilute aqueous electrolytes, which helps to achieve high-voltage aqueous electrochemical energy storage devices. However, the ultra-high concentration of WIS electrolytes raises a serious concern about their temperature availability. Herein, we demonstrate the correlation of the temperature-dependent electrochemical performance of different-concentration electrolytes with their solvation structures and intermolecular interactions as elabo-rated via Raman spectroscopy and molecular dynamics simulations. The 21 m (mol kg-1) WIS electrolyte is advantageous in the high-temperature range of >25 degrees C, whereas the 5 m WIS electrolyte shows superior low -temperature performance, remaining a stable gel state even at-30 degrees C ascribed to the muscular hydrogen bond network. The electrochemical performance evaluation of carbon supercapacitors assembled with different -concentration WIS electrolytes further verify our findings. This study provides guidance to choose suitable WIS electrolytes for electrochemical energy storage devices working at different temperatures.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 50 条
  • [21] Unveiling the Formation of Solid Electrolyte Interphase and its Temperature Dependence in "Water-in-Salt" Supercapacitors
    Quan, Ting
    Haerk, Eneli
    Xu, Yaolin
    Ahmet, Ibbi
    Hoehn, Christian
    Mei, Shilin
    Lu, Yan
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (03) : 3979 - 3990
  • [22] Temperature-dependent structure evolution in liquid gallium
    Xiong, L. H.
    Wang, X. D.
    Yu, Q.
    Zhang, H.
    Zhang, F.
    Sun, Y.
    Cao, Q. P.
    Xie, H. L.
    Xiao, T. Q.
    Zhang, D. X.
    Wang, C. Z.
    Ho, K. M.
    Ren, Y.
    Jiang, J. Z.
    ACTA MATERIALIA, 2017, 128 : 304 - 312
  • [23] Energetic influence of methylene blue on the electrochemical performance of activated carbon in a water-in-salt electrolyte
    Pan, Yunying
    Cheng, Shuang
    Ji, Xu
    Liu, Ting
    Meng, Lijun
    IONICS, 2022, 28 (05) : 2481 - 2488
  • [24] Cashew Nut Shell Derived Porous Activated Carbon Electrodes for "Water-in-Salt" Electrolyte Based Symmetric Supercapacitor
    Pulikkottil, Merin
    Antony, Henock
    Muralidharan, Malamal Neelanchery
    Gopalan, Elavumkal Veena
    Ansari, Seema
    CHEMISTRYSELECT, 2022, 7 (23):
  • [25] Energetic influence of methylene blue on the electrochemical performance of activated carbon in a water-in-salt electrolyte
    Yunying Pan
    Shuang Cheng
    Xu Ji
    Ting Liu
    Lijun Meng
    Ionics, 2022, 28 : 2481 - 2488
  • [26] Acidic "Water-in-Salt" Electrolyte Enables a High-Energy Symmetric Supercapacitor Based on Titanium Carbide MXene
    Yuan, Chengzhi
    Chen, Chaofan
    Yang, Zhiwei
    Cheng, Jiaji
    Weng, Ji
    Tan, Shuhui
    Hou, Renzhong
    Cao, Tao
    Tang, Zeguo
    Chen, Wei
    Xu, Baomin
    Wang, Xuehang
    Tang, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (41) : 55189 - 55197
  • [27] Suppressing water decomposition for controllable exfoliation of graphite in water-in-salt electrolyte
    Yang, Juan
    Wang, Yue
    Lang, Junwei
    Li, Xia
    Tai, Zhixin
    Ma, Jiantai
    APPLIED SURFACE SCIENCE, 2022, 591
  • [28] Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte
    Lim, Joonhyung
    Park, Kwanghee
    Lee, Hochan
    Kim, Jungyu
    Kwak, Kyungwon
    Cho, Minhaeng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (46) : 15661 - 15667
  • [29] Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte
    Kwak, Kyungwon (kkwak@korea.ac.kr), 1600, American Chemical Society (140):
  • [30] Towards the understanding of acetonitrile suppressing salt precipitation mechanism in a water-in-salt electrolyte for low-temperature supercapacitors
    Sun, Yinglun
    Wang, Yue
    Liu, Lingyang
    Liu, Bao
    Zhang, Qingnuan
    Wu, Dandan
    Zhang, Hongzhang
    Yan, Xingbin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (35) : 17998 - 18006