Self-supervised learning for single-pixel imaging via dual-domain constraints

被引:8
|
作者
Chang, Xuyang [1 ,2 ,3 ]
Wu, Ze [1 ,2 ,3 ]
LI, Daoyu [1 ,2 ,3 ]
Zhan, Xinrui [1 ,2 ,3 ]
Yan, Rong [1 ,2 ,3 ]
Bian, Liheng [1 ,2 ,3 ,4 ]
机构
[1] Beijing Inst Technol, MIIT Key Lab Complex Field Intelligent Sensing, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[4] Yangtze Delta Reg Acad, Beijing Inst Technol Jiaxing, Jiaxing 314019, Peoples R China
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1364/OL.483886
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deep-learning-augmented single-pixel imaging (SPI) provides an efficient solution for target compressive sensing. However, the conventional supervised strategy suffers from laborious training and poor generalization. In this Letter, we report a self-supervised learning method for SPI reconstruction. It introduces dual-domain constraints to integrate the SPI physics model into a neural network. Specifically, in addition to the traditional measurement constraint, an extra transformation constraint is employed to ensure target plane consistency. The transformation constraint uses the invariance of reversible transformation to impose an implicit prior, which avoids the non-uniqueness of measurement constraint. A series of experiments validate that the reported technique realizes self-supervised reconstruction in various complex scenes without any paired data, ground truth, or pre-trained prior. It can tackle the underdetermined degradation and noise, with similar to 3.7-dB improvement on the PSNR index compared with the existing method. (c) 2023 Optica Publishing Group
引用
下载
收藏
页码:1566 / 1569
页数:4
相关论文
共 50 条
  • [21] Compressive ultrafast pulse measurement via time-domain single-pixel imaging
    Zhao, Jiapeng
    Dai, Jianming
    Braverman, Boris
    Zhang, Xi-Cheng
    Boyd, Robert W.
    OPTICA, 2021, 8 (09): : 1176 - 1185
  • [22] Compressive optical steganography via single-pixel imaging
    Zhang, Chenggong
    He, Wenqi
    Han, Bennian
    Liao, Meihua
    Lu, Dajiang
    Peng, Xiang
    Xu, Chen
    OPTICS EXPRESS, 2019, 27 (09) : 13469 - 13478
  • [23] PIN: Sparse Aperture ISAR Imaging via Self-Supervised Learning
    Li, Hongzhi
    Xu, Jialiang
    Song, Haoxuan
    Wang, Yong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [24] Micro-tomography via single-pixel imaging
    Peng, Junzheng
    Yao, Manhong
    Cheng, Jiajian
    Zhang, Zibang
    Li, Shiping
    Zheng, Guoan
    Zhong, Jingang
    OPTICS EXPRESS, 2018, 26 (24): : 31094 - 31105
  • [25] Deep Learning Optimized Terahertz Single-Pixel Imaging
    Zhu, Yong-Le
    She, Rong-Bin
    Liu, Wen-Quan
    Lu, Yuan-Fu
    Li, Guang-Yuan
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2022, 12 (02) : 165 - 172
  • [26] Learning by Sorting: Self-supervised Learning with Group Ordering Constraints
    Shvetsova, Nina
    Petersen, Felix
    Kukleva, Anna
    Schiele, Bernt
    Kuehne, Hilde
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 16407 - 16417
  • [27] Motion Deblurring for Single-Pixel Spatial Frequency Domain Imaging
    Dan, Mai
    Liu, Meihui
    Gao, Feng
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [28] Single-pixel spatial frequency domain imaging with integrating detection
    Lenz, Armin J. M.
    Clemente, Pere
    Climent, Vicent
    Lancis, Jesus
    Tajahuerce, Enrique
    DIFFUSE OPTICAL SPECTROSCOPY AND IMAGING VIII, 2021, 11920
  • [29] UNSUPERVISED SINGLE IMAGE DERAINING WITH SELF-SUPERVISED CONSTRAINTS
    Jin, Xin
    Chen, Zhibo
    Lin, Jianxin
    Chen, Zhikai
    Zhou, Wei
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2761 - 2765
  • [30] Efficient spectral single-pixel imaging via Morton frequency-domain scanning [Invited]
    赵梓栋
    杨照华
    赵志浩
    吴令安
    余远金
    ChineseOpticsLetters, 2024, 22 (06) : 13 - 19