Microchip encapsulation and microRNA-7 overexpression of trabecular meshwork mesenchymal stem/stromal cells improve motor function after spinal cord injury

被引:4
|
作者
Mohammadi, Parvin [1 ,2 ]
Nadri, Samad [3 ,4 ,5 ,8 ]
Abdanipour, Alireza [6 ,9 ]
Mortazavi, Yousef [2 ,7 ]
机构
[1] Zanjan Univ Med Sci, Student Res Comm, Sch Med, Zanjan, Iran
[2] Zanjan Univ Med Sci, Sch Med, Dept Med Biotechnol, Zanjan, Iran
[3] Zanjan Univ Med Sci, Zanjan Metab Dis Res Ctr, Zanjan, Iran
[4] Zanjan Univ Med Sci, Sch Med, Dept Med Nanotechnol, Zanjan, Iran
[5] Zanjan Univ Med Sci, Zanjan Pharmaceut Nanotechnol Res Ctr, Zanjan, Iran
[6] Zanjan Univ Med Sci, Sch Med, Dept Anat, Zanjan, Iran
[7] Zanjan Univ Med Sci, Canc Gene Therapy Res Ctr, Zanjan, Iran
[8] Zanjan Metab Dis Res Ctr, POB 14115-111, Zanjan, Iran
[9] Anat Dept, POB 14115-111, Zanjan, Iran
关键词
contusion; differentiation; hydrogel; microfluidic chip; miR-7; spinal cord injury; trabecular meshwork mesenchymal stem/stromal cells; EMBRYONIC STEM-CELLS; NEURAL DIFFERENTIATION; HYDROGEL; EXPRESSION; PROMOTES; RECOVERY; GRAFTS;
D O I
10.1002/jbm.a.37549
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Manipulation of stem cells and microencapsulation through microfluidic chips has shown more promising results in treating complex conditions, such as spinal cord injury (SCI), than traditional treatments. This study aimed to investigate the potency of neural differentiation and its therapeutic role in SCI animal model of trabecular meshwork mesenchymal stem/stromal cells (TMMSCs) via miR-7 overexpression and microchip-encapsulated. TMMSCs are transduced with miR-7 via a lentiviral vector (TMMSCs-miR-7[+]) and encapsulated in alginate-reduced graphene oxide (alginate-rGO) hydrogel via a microfluidic chip. Neuronal differentiation of transduced cells in hydrogel (3D) and tissue cultures plate (2D) was assessed by expressing specific mRNAs and proteins. Further evaluation is being carried out through 3D and 2D TMMSCs-miR-7(+ and -) transplantation into the rat contusion SCI model. TMMSCs-miR-7(+) encapsulated in the microfluidic chip (miR-7-3D) increased nestin, b-tubulin III, and MAP-2 expression compared with 2D culture. Moreover, miR-7-3D could improve locomotor behavior in contusion SCI rats, decrease cavity size, and increase myelination. Our results revealed that miR-7 and alginate-rGO hydrogel were involved in the neuronal differentiation of TMMSCs in a time-dependent manner. In addition, the microfluidic-encapsulated miR-7 overexpression TMMSCs represented a better survival and integration of the transplanted cells and the repair of SCI. Collectively, the combination of miR-7 overexpression and encapsulation of TMMSCs in hydrogels may represent a promising new treatment for SCI.
引用
下载
收藏
页码:1482 / 1494
页数:13
相关论文
共 50 条
  • [31] SDF-1 Overexpression by Mesenchymal Stem Cells Enhances GAP-43-Positive Axonal Growth After Spinal Cord Injury
    Stewart, A. N.
    Matyas, J. J.
    Welchko, R. M.
    Goldsmith, A.
    Peterson, E. D.
    Zeiler, S. E.
    Brandi, N. M.
    Lu, M.
    Nan, Z.
    Rossignol, J.
    Dunbar, G. L.
    CELL TRANSPLANTATION, 2016, 25 (04) : 773 - 774
  • [32] FGF-2-Responsive and Spinal Cord-Resident Cells Improve Locomotor Function after Spinal Cord Injury
    Kasai, Masaki
    Jikoh, Takahiro
    Fukumitsu, Hidefumi
    Furukawa, Shoei
    JOURNAL OF NEUROTRAUMA, 2014, 31 (18) : 1584 - 1598
  • [33] Transplantation of Human umbilical cord mesenchymal stem cells promotes functional recovery after spinal cord injury by blocking the expression of IL-7
    Bao, C. -S.
    Li, X. -L.
    Liu, L.
    Wang, B.
    Yang, F. -B.
    Chen, L. -G.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2018, 22 (19) : 6436 - 6447
  • [34] Improvement of neurological function in rats with spinal cord injury after the transplantation of neural stem cells directly differentiated from bone marrow mesenchymal stem cells
    张小宁
    外科研究与新技术, 2011, 20 (04) : 290 - 290
  • [35] Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells
    Hu, Sheng-Li
    Luo, Hai-Shui
    Li, Jiang-Tao
    Xia, Yong-Zhi
    Li, Lan
    Zhang, Li-Jun
    Meng, Hui
    Cui, Gao-Yu
    Chen, Zhi
    Wu, Nan
    Lin, Jiang-Kai
    Zhu, Gang
    Feng, Hua
    CRITICAL CARE MEDICINE, 2010, 38 (11) : 2181 - 2189
  • [36] Tracking of radiolabelled mesenchymal stem cells after intrathecal transplantation in patients with traumatic spinal cord injury
    Lezaic, L.
    Socan, A.
    Bajrovic, F.
    Svajger, U.
    Sever, M.
    Jug, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S253 - S253
  • [37] Mesenchymal stem cells,extracellular vesicles,and transcranial magnetic stimulation for ferroptosis after spinal cord injury
    Qi-Feng Song
    Qian Cui
    Ya-Shi Wang
    Li-Xin Zhang
    Neural Regeneration Research, 2023, 18 (09) : 1861 - 1868
  • [38] Mesenchymal stem cells, extracellular vesicles, and transcranial magnetic stimulation for ferroptosis after spinal cord injury
    Song, Qi-Feng
    Cui, Qian
    Wang, Ya-Shi
    Zhang, Li-Xin
    NEURAL REGENERATION RESEARCH, 2023, 18 (09) : 1861 - 1868
  • [39] Recovery of motricity and micturition after transplantation of mesenchymal stem cells in rats subjected to spinal cord injury
    Villanova Junior, Jose Ademar
    Fracaro, Leticia
    Kuniyoshi Rebelatto, Carmen Lucia
    da Silva, Alexandra Justino
    Barchiki, Fabiane
    Senegaglia, Alexandra Cristina
    Dominguez, Alejandro Correa
    Bezerra de Moura, Sergio Adriane
    Pimpao, Claudia Turra
    Slud Brofman, Paulo Roberto
    Dittrich, Rosangela Locatelli
    NEUROSCIENCE LETTERS, 2020, 734
  • [40] Homing of mesenchymal stem cells after acute traumatic cervical spinal cord injury - a case report
    Jug, M.
    Svajger, U.
    Lezaic, L.
    Socan, A.
    Sever, M.
    Zver, S.
    Bajrovic, F.
    CYTOTHERAPY, 2020, 22 (05) : S89 - S90