SF-YOLOv5: Improved YOLOv5 with swin transformer and fusion-concat method for multi-UAV detection

被引:4
|
作者
Ma, Jun [1 ]
Wang, Xiao [1 ]
Xu, Cuifeng [1 ]
Ling, Jing [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Elect Engn & Automat, 1 Jinji Rd, Guilin 541004, Guangxi, Peoples R China
来源
MEASUREMENT & CONTROL | 2023年 / 56卷 / 7-8期
基金
中国国家自然科学基金;
关键词
Multi-UAV; target detection; deep learning;
D O I
10.1177/00202940231164126
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When dealing with complex trajectories, and the interference by the unmanned aerial vehicle (UAV) itself or other flying objects, the traditional detecting methods based on YOLOv5 network mainly focus on one UAV and difficult to detect the multi-UAV effectively. In order to improve the detection method, a novel algorithm combined with swin transformer blocks and a fusion-concat method based on YOLOv5 network, so called SF-YOLOv5, is proposed. Furthermore, by using the distance intersection over union and non-maximum suppression (DIoU-NMS) as post-processing method, the proposed network can remove redundant detection boxes and improve the efficiency of the multi-UAV detection. Experimental results verify the feasibility and effectiveness of the proposed network, and show that the mAP trained on the two datasets used in experiments has been improved by 2.5 and 4.11% respectively. The proposed network can detect multi-UAV while ensuring accuracy and speed, and can be effectively used in the field of UAV monitoring or other types of multi-object detection applications.
引用
收藏
页码:1436 / 1445
页数:10
相关论文
共 50 条
  • [21] Small object detection in UAV image based on improved YOLOv5
    Zhang, Jian
    Wan, Guoyang
    Jiang, Ming
    Lu, Guifu
    Tao, Xiuwen
    Huang, Zhiyuan
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2023, 11 (01)
  • [22] Real-Time Detection of Voids in Asphalt Pavement Based on Swin-Transformer-Improved YOLOv5
    Zhang, Bei
    Cheng, Haoyuan
    Zhong, Yanhui
    Chi, Jing
    Shen, Guoyin
    Yang, Zhaoxu
    Li, Xiaolong
    Xu, Shengjie
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (03) : 2615 - 2626
  • [23] HIC-YOLOv5: Improved YOLOv5 For Small Object Detection
    Tang, Shiyi
    Zhang, Shu
    Fang, Yini
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 6614 - 6619
  • [24] MCF-YOLOv5: A Small Target Detection Algorithm Based on Multi-Scale Feature Fusion Improved YOLOv5
    Gao, Song
    Gao, Mingwang
    Wei, Zhihui
    INFORMATION, 2024, 15 (05)
  • [25] A Camouflaged Target Detection Method with Improved YOLOv5 Algorithm
    Peng, Ruihui
    Lai, Jie
    Sun, Dianxing
    Li, Mang
    Yan, Ruyu
    Li, Xue
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (08): : 3324 - 3333
  • [26] An infrared vehicle detection method based on improved YOLOv5
    Zhang X.
    Zhao H.
    Liu W.
    Zhao Y.
    Guan S.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (08):
  • [27] Small Object Detection Method based on Improved YOLOv5
    Gao, Tianyu
    Wushouer, Mairidan
    Tuerhong, Gulanbaier
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 144 - 149
  • [28] A forest fire detection method based on improved YOLOv5
    Sun, Zukai
    Xu, Ruzhi
    Zheng, Xiangwei
    Zhang, Lifeng
    Zhang, Yuang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [29] YOLOv5-OCDS: An Improved Garbage Detection Model Based on YOLOv5
    Sun, Qiuhong
    Zhang, Xiaotian
    Li, Yujia
    Wang, Jingyang
    ELECTRONICS, 2023, 12 (16)
  • [30] BDC-YOLOv5: a helmet detection model employs improved YOLOv5
    Zhao, Lihong
    Tohti, Turdi
    Hamdulla, Askar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (08) : 4435 - 4445