Electrospinning synthesis and negative thermal expansion of one-dimensional Sc2Mo3O12 nanofibers

被引:2
|
作者
Liu, Hongfei [1 ,3 ]
Huang, Feiyu [1 ]
Wang, Wei [1 ]
Meng, Xiangdong [1 ,3 ]
Zhang, Zhiping [2 ]
机构
[1] Yangzhou Univ, Sch Phys Sci & Technol, Yangzhou 225002, Peoples R China
[2] Yangzhou Univ, Guangling Coll, Dept Mech & Elect Engn, Yangzhou 225000, Peoples R China
[3] Yangzhou Univ, Microelect Ind Res Inst, Yangzhou 225002, Peoples R China
基金
中国国家自然科学基金;
关键词
Negative thermal expansion; Nanofiber; Electrospinning; Sc2(MoO4)3; PHASE-TRANSITIONS; MOLYBDATE;
D O I
10.1016/j.ceramint.2022.11.261
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Orthorhombic Sc2(MoO4)3 nanofibers have been prepared by ethylene glycol assisted electrospinning method. The effects of annealing temperature, precursor concentration, spinning distance and solvent on the preparation of Sc2(MoO4)3 nanofibers were characterized by XRD, SEM, HRTEM, EDX and high-temperature XRD. XRD analysis shows as-prepared nanofibers are amorphous. Orthorhombic Sc2(MoO4)3 nanofibers can be fabricated after annealing at different temperatures in 500-800 degrees C for 2 h. The crystallinity of Sc2(MoO4)3 nanofibers improves and the nanofiber diameter decreases gradually as the annealing temperature increases. However, the nanofiber structure was destroyed at the annealing temperature above 700 degrees C. Higher precursor concentration results in a slight increase of diameter and decrease in destroying temperature of Sc2(MoO4)3 nanofibers. Spinning distance also affects the diameter of nanofibers, and the nanofiber diameter decreases as the distance increases. One-dimensional orthorhombic Sc2(MoO4)3 nanofibers exhibit anisotropic negative thermal expan-sion. In 25-700 degrees C, the coefficients of thermal expansion (CTE) of alpha a, alpha b and alpha c are-5.81 x 10-6 degrees C-1, 4.80 x 10-6 degrees C-1 and-4.33 x 10-6 degrees C-1, and the alpha l of Sc2(MoO4)3 nanofibers is-1.83 x 10-6 degrees C-1.
引用
收藏
页码:10714 / 10721
页数:8
相关论文
共 50 条
  • [22] Fabrication and Magnetic Property of One-dimensional SrTiO3/SrFe12O19 Composite Nanofibers by Electrospinning
    Liang, Qingrong
    Shen, Xiangqian
    Song, Fuzhan
    Liu, Mingquan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (11) : 996 - 1000
  • [23] Synthesis and negative thermal expansion performance of (NaMg)3+ codoped Sc2W3O12 ceramics
    Fan, Xiaoxue
    Zhang, Zhiping
    Liu, Hongfei
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2025, 108 (04)
  • [24] Phase transition and negative thermal expansion properties of Sc2-xCrxMo3O12
    Wu, M. M.
    Peng, J.
    Han, S. B.
    Hu, Z. B.
    Liu, Y. T.
    Chen, D. F.
    CERAMICS INTERNATIONAL, 2012, 38 (08) : 6525 - 6529
  • [25] High acetone sensing properties of In2O3-NiO one-dimensional heterogeneous nanofibers based on electrospinning
    Fan, Xiangxiang
    Xu, Yajuan
    He, Wuming
    RSC ADVANCES, 2021, 11 (19) : 11215 - 11223
  • [26] Controllable synthesis of Sc2Mo3O12 microcrystals with exposed {001} facets and their remarkable tunable luminescence properties by doping lanthanides
    Zhao, Bei
    Yuan, Li
    Hu, Shanshan
    Zhang, Xuemei
    Zhou, Xianju
    Tang, Jianfeng
    Yang, Jun
    CRYSTENGCOMM, 2016, 18 (41): : 8044 - 8058
  • [27] 负膨胀材料Sc2Mo3O12的变温拉曼研究
    袁焕丽
    陈浩
    高小盈
    彭勋
    王昱昊
    周口师范学院学报, 2024, 41 (05) : 43 - 45
  • [28] Thermal, vibrational, and thermoelastic properties of Y2Mo3O12 and their relations to negative thermal expansion
    Romao, Carl P.
    Miller, Kimberly J.
    Johnson, Michel B.
    Zwanziger, J. W.
    Marinkovic, Bojan A.
    White, Mary Anne
    PHYSICAL REVIEW B, 2014, 90 (02):
  • [29] High pressure synchrotron x-ray powder diffraction study Of Sc2Mo3O12 and Al2W3O12
    Varga, T
    Wilkinson, AP
    Lind, C
    Bassett, WA
    Zha, CS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (27) : 4271 - 4283
  • [30] Study on the preparation of Fe2Mo3O12 and its negative thermal expansion property
    Liu, Qinqin
    Yang, Juan
    Cheng, Xiaonong
    APPLICATIONS OF ENGINEERING MATERIALS, PTS 1-4, 2011, 287-290 : 373 - 376