Electrical Conductivity Boost: In Situ Polypyrrole Polymerization in Monolithically Integrated Surface-Supported Metal-Organic Framework Templates

被引:4
|
作者
Vello, Tatiana Parra [1 ,2 ]
Albano, Luiz Gustavo Simao [1 ]
dos Santos, Thamiris Cescon [3 ]
Colletti, Julia Cantovitz [1 ]
Santos Batista, Carlos Vinicius [1 ,3 ]
Leme, Vitoria Fernandes Cintra [1 ]
dos Santos, Thamiris Costa [1 ]
Miguel, Maria Paula Dias Carneiro [1 ]
de Camargo, Davi Henrique Starnini [1 ]
Bof Bufon, Carlos Cesar [2 ,3 ,4 ,5 ]
机构
[1] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Nanotechnol Natl Lab LNNano, BR-13083970 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Inst Chem IQ, Dept Phys Chem, BR-13084862 Campinas, SP, Brazil
[3] Sao Paulo State Univ UNESP, Postgrad Program Mat Sci & Technol POSMAT, BR-17033360 Bauru, SP, Brazil
[4] Mackenzie Evangel Fac Parana FEMPAR, BR-80730000 Curitiba, PR, Brazil
[5] Mackenzie Presbyterian Inst IPM, BR-01302907 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
charge transport; electrical conductivity; HKUST-1; polymer loading; polypyrrole; surface-supported metal-organic frameworks (SURMOFs); TRANSPORT-PROPERTIES; THIN-FILMS; MOF; EMISSION; TEMPERATURE; POLARON; GROWTH; STATES; TRAPS;
D O I
10.1002/smll.202305501
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent progress in synthesizing and integrating surface-supported metal-organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost-effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials. This study introduces a method to improve the electrical conductivity of HKUST-1 templates by in situ polymerization of conductive polypyrrole (PPy) chains within the SURMOF pores (named as PPy@HKUST-1). Nanomembrane-origami technology is employed for integration, allowing a rolled-up metallic nanomembrane to contact the HKUST-1 films without causing damage. After a 24 h loading period, the electrical conductivity at room temperature reaches approximately 5.10-6 S m-1. The nanomembrane-based contact enables reliable electrical characterization even at low temperatures. Key parameters of PPy@HKUST-1 films, such as trap barrier height, dielectric constant, and tunneling barrier height, are determined using established conduction mechanisms. These findings represent a significant advancement in real-time control of SURMOF conductivity, opening pathways for innovative electronic-optoelectronic device development. This study demonstrates the potential of SURMOFs to revolutionize hybrid electronic devices by enhancing electrical conductivity through intelligent integration strategies. A significant enhancement in electrical conductivity and a comprehensive electrical characterization at low temperatures of surface-supported metal-organic frameworks (SURMOFs) are detailed in this study. By employing in situ polymerization of polypyrrole (PPy), this work successfully integrates an HKUST-1 SURMOF thin-film into a solid-state device using an innovative nanomembrane-origami technology concept. This integration allows for damage-free and self-adjusting contact. The electrical characterization conducted at low temperatures exhibits remarkable consistency with well-established electrical conduction mechanisms. Most notably, the achieved electrical conductivity reaches an impressive value of 5.10-6 S m-1, representing a remarkable improvement of seven orders of magnitude when compared to the initial pristine film. This groundbreaking outcome underscores the substantial potential of this approach in enhancing the electrical properties of SURMOFs, paving the way for exciting prospects in the development of advanced hybrid electronic devices.image
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Increased Electrical Conductivity in a Mesoporous Metal-Organic Framework Featuring Metallacarboranes Guests
    Kung, Chung-Wei
    Otake, Kenichi
    Buru, Cassandra T.
    Goswami, Subhadip
    Cui, Yuexing
    Hupp, Joseph T.
    Spokoyny, Alexander M.
    Farha, Omar K.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (11) : 3871 - 3875
  • [22] Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices
    Talin, A. Alec
    Centrone, Andrea
    Ford, Alexandra C.
    Foster, Michael E.
    Stavila, Vitalie
    Haney, Paul
    Kinney, R. Adam
    Szalai, Veronika
    El Gabaly, Farid
    Yoon, Heayoung P.
    Leonard, Francois
    Allendorf, Mark D.
    SCIENCE, 2014, 343 (6166) : 66 - 69
  • [23] A stable lanthanum hydroxamate metal-organic framework with radical character and electrical conductivity
    Yan, Yong
    Zhang, Ning-Ning
    Fuhrmann, Daniel
    Merker, Stefan
    Krautscheid, Harald
    DALTON TRANSACTIONS, 2022, 51 (41) : 15946 - 15953
  • [24] Modulating the electrical conductivity of metal-organic framework films with intercalated guest π-systems
    Guo, Zhiyong
    Panda, Dillip K.
    Maity, Krishnendu
    Lindsey, David
    Parker, T. Gannon
    Albrecht-Schmitt, Thomas E.
    Barreda-Esparza, Jorge L.
    Xiong, Peng
    Zhou, Wei
    Saha, Sourav
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (05) : 894 - 899
  • [25] Polypyrrole-wrapped Hofmann type metal-organic framework nanoflowers to boost oxygen evolution reaction
    Wu, Yuhang
    Li, Yuwen
    Shen, Ling
    Pan, Quanwen
    Tao, Ye
    Gao, Junkuo
    JOURNAL OF SOLID STATE CHEMISTRY, 2024, 332
  • [26] In Situ Formation of Micropore-Rich Titanium Dioxide from Metal-Organic Framework Templates
    Zhai, Linzhi
    Qian, Yuhong
    Wang, Yuxiang
    Cheng, Youdong
    Dong, Jinqiao
    Peh, Shing Bo
    Zhao, Dan
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (43) : 36933 - 36940
  • [27] Ethylene polymerization with a crystallographically well-defined metal-organic framework supported catalyst
    Goetjen, Timothy A.
    Knapp, Julia G.
    Syed, Zoha H.
    Hackler, Ryan A.
    Zhang, Xuan
    Delferro, Massimiliano
    Hupp, Joseph T.
    Farha, Omar K.
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (05) : 1619 - 1627
  • [28] Magnetic Coupling and Single-Ion Anisotropy in Surface-Supported Mn-Based Metal-Organic Networks
    Giovanelli, L.
    Savoyant, A.
    Abel, M.
    Maccherozzi, F.
    Ksari, Y.
    Koudia, M.
    Hayn, R.
    Choueikani, F.
    Otero, E.
    Ohresser, P.
    Themlin, J. -M.
    Dhesi, S. S.
    Clair, S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (22): : 11738 - 11744
  • [29] Facile One-Step Metal-Organic Framework Surface Polymerization Method
    Li, Siqi
    Zhang, Songwei
    Dai, Dejun
    Li, Tao
    INORGANIC CHEMISTRY, 2021, 60 (16) : 11750 - 11755
  • [30] Simultaneous Enhancement of Electrical Conductivity and Porosity of a Metal-Organic Framework Toward Thermoelectric Applications
    Olorunyomi, Joseph F.
    Dyett, Brendan P.
    Murdoch, Billy J.
    Ahmed, Al Jumlat
    Rosengarten, Gary
    Caruso, Rachel A.
    Doherty, Cara M.
    Mulet, Xavier
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)