Electrical Conductivity Boost: In Situ Polypyrrole Polymerization in Monolithically Integrated Surface-Supported Metal-Organic Framework Templates

被引:4
|
作者
Vello, Tatiana Parra [1 ,2 ]
Albano, Luiz Gustavo Simao [1 ]
dos Santos, Thamiris Cescon [3 ]
Colletti, Julia Cantovitz [1 ]
Santos Batista, Carlos Vinicius [1 ,3 ]
Leme, Vitoria Fernandes Cintra [1 ]
dos Santos, Thamiris Costa [1 ]
Miguel, Maria Paula Dias Carneiro [1 ]
de Camargo, Davi Henrique Starnini [1 ]
Bof Bufon, Carlos Cesar [2 ,3 ,4 ,5 ]
机构
[1] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Nanotechnol Natl Lab LNNano, BR-13083970 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Inst Chem IQ, Dept Phys Chem, BR-13084862 Campinas, SP, Brazil
[3] Sao Paulo State Univ UNESP, Postgrad Program Mat Sci & Technol POSMAT, BR-17033360 Bauru, SP, Brazil
[4] Mackenzie Evangel Fac Parana FEMPAR, BR-80730000 Curitiba, PR, Brazil
[5] Mackenzie Presbyterian Inst IPM, BR-01302907 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
charge transport; electrical conductivity; HKUST-1; polymer loading; polypyrrole; surface-supported metal-organic frameworks (SURMOFs); TRANSPORT-PROPERTIES; THIN-FILMS; MOF; EMISSION; TEMPERATURE; POLARON; GROWTH; STATES; TRAPS;
D O I
10.1002/smll.202305501
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent progress in synthesizing and integrating surface-supported metal-organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost-effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials. This study introduces a method to improve the electrical conductivity of HKUST-1 templates by in situ polymerization of conductive polypyrrole (PPy) chains within the SURMOF pores (named as PPy@HKUST-1). Nanomembrane-origami technology is employed for integration, allowing a rolled-up metallic nanomembrane to contact the HKUST-1 films without causing damage. After a 24 h loading period, the electrical conductivity at room temperature reaches approximately 5.10-6 S m-1. The nanomembrane-based contact enables reliable electrical characterization even at low temperatures. Key parameters of PPy@HKUST-1 films, such as trap barrier height, dielectric constant, and tunneling barrier height, are determined using established conduction mechanisms. These findings represent a significant advancement in real-time control of SURMOF conductivity, opening pathways for innovative electronic-optoelectronic device development. This study demonstrates the potential of SURMOFs to revolutionize hybrid electronic devices by enhancing electrical conductivity through intelligent integration strategies. A significant enhancement in electrical conductivity and a comprehensive electrical characterization at low temperatures of surface-supported metal-organic frameworks (SURMOFs) are detailed in this study. By employing in situ polymerization of polypyrrole (PPy), this work successfully integrates an HKUST-1 SURMOF thin-film into a solid-state device using an innovative nanomembrane-origami technology concept. This integration allows for damage-free and self-adjusting contact. The electrical characterization conducted at low temperatures exhibits remarkable consistency with well-established electrical conduction mechanisms. Most notably, the achieved electrical conductivity reaches an impressive value of 5.10-6 S m-1, representing a remarkable improvement of seven orders of magnitude when compared to the initial pristine film. This groundbreaking outcome underscores the substantial potential of this approach in enhancing the electrical properties of SURMOFs, paving the way for exciting prospects in the development of advanced hybrid electronic devices.image
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Inspecting the nonbonding and antibonding orbitals in a surface-supported metal-organic framework
    Liu, Bing
    Zhang, Shengjie
    Miao, Guangyao
    Guo, Jiandong
    Meng, Sheng
    Wang, Weihua
    CHEMICAL COMMUNICATIONS, 2021, 57 (37) : 4580 - 4583
  • [2] Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
    Albano, Luiz G. S.
    Vello, Tatiana P.
    de Camargo, Davi H. S.
    da Silva, Ricardo M. L.
    Padilha, Antonio C. M.
    Fazzio, Adalberto
    Bufon, Carlos C. B.
    NANO LETTERS, 2020, 20 (02) : 1080 - 1088
  • [3] Metal-organic coordination networks for surface-supported transition metal catalysts
    Skomski, Daniel
    Draper, Benjamin E.
    Williams, Christopher G.
    Tempas, Christopher D.
    Smith, Kevin A.
    Tait, Steven L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [4] Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges
    Liu, Jinxuan
    Woell, Christof
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (19) : 5730 - 5770
  • [5] Room-Temperature Negative Differential Resistance in Surface-Supported Metal-Organic Framework Vertical Heterojunctions
    Albano, Luiz G. S.
    de Camargo, Davi H. S.
    Schleder, Gabriel R.
    Deeke, Samantha G.
    Vello, Tatiana P.
    Palermo, Leirson D.
    Correa, Catia C.
    Fazzio, Adalberto
    Woell, Christof
    Bufon, Carlos C. B.
    SMALL, 2021, 17 (35)
  • [6] Tunable electrical conductivity in metal-organic framework powders
    Calvo, James
    So, Monica
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [7] In Situ Polymerization of Polypyrrole @ Aluminum Fumarate Metal-Organic Framework Hybrid Nanocomposites for the Application of Wastewater Treatment
    Zayan, Sarah
    Elshazly, Ahmed
    Elkady, Marwa
    POLYMERS, 2020, 12 (08)
  • [8] Giant and Multistage Nonlinear Optical Response in Porphyrin-Based Surface-Supported Metal-Organic Framework Nanofilms
    Gu, Chun
    Zhang, Hang
    You, Pengxian
    Zhang, Qiao
    Luo, Guoqiang
    Shen, Qiang
    Wang, Zhengbang
    Hu, Jianbo
    NANO LETTERS, 2019, 19 (12) : 9095 - 9101
  • [9] Surface-Supported Metal-Organic Framework as Low-Dielectric-Constant Thin Films for Novel Hybrid Electronics
    da Silva, Ricardo M. L.
    Albano, Luiz G. S.
    Vello, Tatiana P.
    de Araujo, Wagner W. R.
    de Camargo, Davi H. S.
    Palermo, Leirson D.
    Correa, Catia C.
    Woell, Christof
    Bufon, Carlos C. B.
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (09):
  • [10] Introducing electrical conductivity to metal-organic framework thin films by templated polymerization of methyl propiolate
    Sen, Beren
    Santos, Jaciara C. C.
    Haldar, Ritesh
    Zhang, Qiang
    Hashem, Tawheed
    Qin, Peng
    Li, Ying
    Kirschhoefer, Frank
    Brenner-Weiss, Gerald
    Gliemann, Hartmut
    Heinke, Lars
    Barner-Kowollik, Christopher
    Knebel, Alexander
    Woell, Christof
    NANOSCALE, 2020, 12 (48) : 24419 - 24428