Predicting Alzheimer's Disease with Interpretable Machine Learning

被引:1
|
作者
Jia, Maoni [1 ]
Wu, Yafei [1 ]
Xiang, Chaoyi [1 ]
Fang, Ya [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Ctr Aging & Hlth Res, Sch Publ Hlth, Xiamen, Peoples R China
[2] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Xiamen, Peoples R China
[3] Xiamen Univ, Sch Publ Hlth, Xiangan Nan Rd, Xiamen 361102, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Alzheimer s disease; Interpretability analysis; Machine learning; Prediction model;
D O I
10.1159/000531819
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Introduction: This study aimed to develop novel machine learning models for predicting Alzheimer's disease (AD) and identify key factors for targeted prevention. Methods: We included 1219, 863, and 482 participants aged 60+ years with only sociodemographic, both sociodemographic and self-reported health, both the former two and blood biomarkers information from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Machine learning models were constructed for predicting the risk of AD for the above three populations. Model performance was evaluated by discrimination, calibration, and clinical usefulness. Shapley additive explanations (SHAP) was applied to identify key predictors of optimal models. Results: The mean age was 73.49, 74.52, and 74.29 years for the three populations, respectively. Models with sociodemographic information and models with both sociodemographic and self-reported health information showed modest performance. For models with sociodemographic and self-reported health, and blood biomarker information, their overall performance improved substantially, specifically, LR performed best, with an AUC value of 0.818. Blood biomarkers of ptau protein and plasma neurofilament light, age, blood tau protein and education level were top five significant predictors. In addition, taurine, inosine, xanthine, marital status, and L.Glutamine also showed importance to AD prediction.Conclusion: Interpretable machine learning showed promise in screening high-risk AD individual, and could further identify key predictors for targeted prevention.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [21] Development and validation of an interpretable deep learning framework for Alzheimer's disease classification
    Qiu, Shangran
    Joshi, Prajakta S.
    Miller, Matthew, I
    Xue, Chonghua
    Zhou, Xiao
    Karjadi, Cody
    Chang, Gary H.
    Joshi, Anant S.
    Dwyer, Brigid
    Zhu, Shuhan
    Kaku, Michelle
    Zhou, Yan
    Alderazi, Yazan J.
    Swaminathan, Arun
    Kedar, Sachin
    Saint-Hilaire, Marie-Helene
    Auerbach, Sanford H.
    Yuan, Jing
    Sartor, E. Alton
    Au, Rhoda
    Kolachalama, Vijaya B.
    BRAIN, 2020, 143 : 1920 - 1933
  • [22] Predicting Alzheimer's Disease Diagnosis Risk Over Time with Survival Machine Learning on the ADNI Cohort
    Musto, Henry
    Stamate, Daniel
    Pu, Ida
    Stahl, Daniel
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2023, 2023, 14162 : 700 - 712
  • [23] PRedicting the EVolution of SubjectIvE Cognitive Decline to Alzheimer’s Disease With machine learning: the PREVIEW study protocol
    Salvatore Mazzeo
    Michael Lassi
    Sonia Padiglioni
    Alberto Arturo Vergani
    Valentina Moschini
    Maenia Scarpino
    Giulia Giacomucci
    Rachele Burali
    Carmen Morinelli
    Carlo Fabbiani
    Giulia Galdo
    Lorenzo Gaetano Amato
    Silvia Bagnoli
    Filippo Emiliani
    Assunta Ingannato
    Benedetta Nacmias
    Sandro Sorbi
    Antonello Grippo
    Alberto Mazzoni
    Valentina Bessi
    BMC Neurology, 23
  • [24] PRedicting the EVolution of SubjectIvE Cognitive Decline to Alzheimer's Disease With machine learning: the PREVIEW study protocol
    Mazzeo, Salvatore
    Lassi, Michael
    Padiglioni, Sonia
    Vergani, Alberto Arturo
    Moschini, Valentina
    Scarpino, Maenia
    Giacomucci, Giulia
    Burali, Rachele
    Morinelli, Carmen
    Fabbiani, Carlo
    Galdo, Giulia
    Amato, Lorenzo Gaetano
    Bagnoli, Silvia
    Emiliani, Filippo
    Ingannato, Assunta
    Nacmias, Benedetta
    Sorbi, Sandro
    Grippo, Antonello
    Mazzoni, Alberto
    Bessi, Valentina
    BMC NEUROLOGY, 2023, 23 (01)
  • [25] Interpretable machine learning for predicting the fate and transport of pentachlorophenol in groundwater
    Rad, Mehran
    Abtahi, Azra
    Berndtsson, Ronny
    Mcknight, Ursula S.
    Aminifar, Amir
    ENVIRONMENTAL POLLUTION, 2024, 345
  • [26] Predicting Hurricane Evacuation Decisions with Interpretable Machine Learning Methods
    Yuran Sun
    Shih-Kai Huang
    Xilei Zhao
    International Journal of Disaster Risk Science, 2024, 15 : 134 - 148
  • [27] Interpretable machine learning model for predicting activist investment targets
    Kim, Minwu
    Benahderrahmane, Sidahmend
    Rahwan, Talal
    JOURNAL OF FINANCE AND DATA SCIENCE, 2024, 10
  • [28] Predicting the evolution of scientific communities by interpretable machine learning approaches
    Tian, Yunpei
    Li, Gang
    Mao, Jin
    JOURNAL OF INFORMETRICS, 2023, 17 (02)
  • [29] Predicting Hurricane Evacuation Decisions with Interpretable Machine Learning Methods
    Yuran Sun
    Shih-Kai Huang
    Xilei Zhao
    InternationalJournalofDisasterRiskScience, 2024, 15 (01) : 134 - 148
  • [30] Predicting and understanding residential water use with interpretable machine learning
    Rachunok, Benjamin
    Verma, Aniket
    Fletcher, Sarah
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (01)