STABILITY OF LINE BUNDLE MEAN CURVATURE FLOW

被引:3
|
作者
Han, Xiaoli [1 ]
Jin, Xishen [2 ]
机构
[1] Tsinghua Univ, Math Dept, Beijing 100084, Peoples R China
[2] Remin Univ China, Sch Math, Beijing 100872, Peoples R China
关键词
Deformed Hermitian-Yang-Mills metric; line bundle mean curvature flow; stability; HERMITIAN-YANG-MILLS; EQUATION;
D O I
10.1090/tran/8963
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, & omega;) be a compact Ka & BULL;hler manifold of complex dimension n and (L, h) be a holomorphic line bundle over X. The line bundle mean curvature flow was introduced by Jacob-Yau in order to find deformed Hermitian Yang-Mills metrics on L. In this paper, we consider the stability of the line bundle mean curvature flow. Suppose there exists a deformed Hermitian Yang Mills metric h<SIC> on L. We prove that the line bundle mean curvature flow converges to h<SIC> exponentially in C & INFIN; sense as long as the initial metric is close to h<SIC> in C2-norm.
引用
收藏
页码:6371 / 6395
页数:25
相关论文
共 50 条
  • [41] Mean curvature flow with obstacles
    Almeida, L.
    Chambolle, A.
    Novaga, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 667 - 681
  • [42] Mean Curvature Flow in -manifolds
    Schaefer, Lars
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (03) : 231 - 255
  • [43] Gaussian mean curvature flow
    Alexander A. Borisenko
    Vicente Miquel
    Journal of Evolution Equations, 2010, 10 : 413 - 423
  • [44] Skew mean curvature flow
    Song, Chong
    Sun, Jun
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
  • [45] Hyperbolic flow by mean curvature
    Rotstein, Horacio G.
    Brandon, Simon
    Novick-Cohen, Amy
    Journal of Crystal Growth, 1999, 198-199 (pt 2): : 1256 - 1261
  • [46] Hyperbolic flow by mean curvature
    Rotstein, HG
    Brandon, S
    Novick-Cohen, A
    JOURNAL OF CRYSTAL GROWTH, 1999, 198 : 1256 - 1261
  • [47] Riemannian mean curvature flow
    Estépar, RSJ
    Haker, S
    Westin, CF
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 613 - 620
  • [48] Singularities of mean curvature flow
    Yuanlong Xin
    Science China Mathematics, 2021, 64 : 1349 - 1356
  • [49] On mean curvature flow with forcing
    Kim, Inwon
    Kwon, Dohyun
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (05) : 414 - 455
  • [50] Width and mean curvature flow
    Colding, Tobias H.
    Minicozzi, William P., II
    GEOMETRY & TOPOLOGY, 2008, 12 : 2517 - 2535