Effects of Dietary Cystine and Tyrosine Supplementation on Melanin Synthesis in the Pacific Oyster (Crassostrea gigas)

被引:6
|
作者
Li, Zhuanzhuan [1 ]
Xu, Chengxun [1 ]
Yu, Hong [1 ]
Kong, Lingfeng [1 ]
Liu, Shikai [1 ]
Li, Qi [1 ,2 ]
机构
[1] Ocean Univ China, Key Lab Mariculture, Minist Educ, Qingdao 266003, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Cystine; Tyrosine; Melanin biosynthesis pathway; Shell color; Crassostrea gigas; SHELL COLOR; GENE-EXPRESSION; SLC7A11; GENE; MANTLE EDGE; PIGMENTATION; MELANOGENESIS; RED; SELECTION; PATHWAYS; CYSTEINE;
D O I
10.1007/s10126-023-10223-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Melanogenesis is a multistep process to produce melanin for dark pigmentation in skin coloration. Previous studies in vertebrates demonstrated that cystine and tyrosine amino acids are involved in the melanin synthesis. However, very little is known about the melanogenesis in bivalve. In this study, cystine supplementation for 30 days significantly upregulated the expression of CgB-aat1, CgCbs and CgTyr and pheomelanin content in the Pacific oyster Crassostrea gigas. Transmission electron microscope (TEM) results revealed more melanosomes in the connective tissue and melanin granules were secreted in epithelium of mantle. In contrast, tyrosine supplementation had no clear effect on melanogenesis except the gene expression changes of CgB-aat1 and CgCbs. In addition, prolonged supplementation of cystine or tyrosine for 60 days had a negative impact on melanogenesis. Indeed, after 60 days, expression of most of the melanin synthesis-related genes under study was decreased, and melanin content was significantly reduced, indicating that cystine and tyrosine might inhibit production of eumelanin and pheomelanin, respectively. In addition, in vitro analysis using primary cell culture from mantle tissue indicated that incubation with cystine, tyrosine, or B-AAT1 polypeptide, CBS/TYR recombinant proteins induced the increase of CgB-aat1 and CgCbs expression in a dose-dependent manner, suggesting the presence of a regulatory network in response to cystine and tyrosine amino acids intakes in pheomelanin synthesis-related gene expression. Taken together, these data indicate that cystine-CgB-aat1-CgCbs-CgTyr axis is a potential regulator of the pheomelanin biosynthesis pathway, and thus plays an important role in the mantle pigmentation in C. gigas. This work provides a new clue for selective cultivation of oyster strains with specific shell colors in bivalve breeding.
引用
收藏
页码:537 / 547
页数:11
相关论文
共 50 条
  • [31] Ecophysiology of the Olympia Oyster, Ostrea lurida, and Pacific Oyster, Crassostrea gigas
    Matthew W. Gray
    Chris J. Langdon
    Estuaries and Coasts, 2018, 41 : 521 - 535
  • [32] Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia
    Sussarellu, Rossana
    Fabioux, Caroline
    Le Moullac, Gilles
    Fleury, Elodie
    Moraga, Dario
    MARINE GENOMICS, 2010, 3 (3-4) : 133 - 143
  • [33] PROCESS OF WOUND HEALING IN PACIFIC OYSTER CRASSOSTREA GIGAS
    DESVOIGNE, DM
    SPARKS, AK
    JOURNAL OF INVERTEBRATE PATHOLOGY, 1968, 12 (01) : 53 - +
  • [34] Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia
    Wrange, Anna-Lisa
    Valero, Johanna
    Harkestad, Lisbeth S.
    Strand, Oivind
    Lindegarth, Susanne
    Christensen, Helle Torp
    Dolmer, Per
    Kristensen, Per Sand
    Mortensen, Stein
    BIOLOGICAL INVASIONS, 2010, 12 (06) : 1453 - 1458
  • [35] Heterosis for yield and crossbreeding of the Pacific oyster Crassostrea gigas
    Hedgecock, Dennis
    Davis, Jonathan P.
    AQUACULTURE, 2007, 272 : S17 - S29
  • [36] Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas
    Kai Song
    Shiyong Wen
    Guofan Zhang
    Marine Biotechnology, 2019, 21 : 614 - 622
  • [37] Sterol metabolism of Pacific oyster (Crassostrea gigas) spat
    Knauer, J
    Kerr, RG
    Lindley, D
    Southgate, PC
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1998, 119 (01): : 81 - 84
  • [38] Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia
    Wrange, Anna-Lisa
    Valero, Johanna
    Harkestad, Lisbeth S.
    Strand, Oivind
    Lindegarth, Susanne
    Christensen, Helle Torp
    Dolmer, Per
    Kristensen, Per Sand
    Mortensen, Stein
    BIOLOGICAL INVASIONS, 2010, 12 (05) : 1145 - 1152
  • [39] CONSTRUCTION OF A CYTOGENETIC MAP FOR THE PACIFIC OYSTER (CRASSOSTREA GIGAS)
    Wang, Shan
    Gaffney, Patrick M.
    Hedgecock, Dennis
    Bao, Zhenmin
    Guo, Ximing
    JOURNAL OF SHELLFISH RESEARCH, 2011, 30 (02): : 561 - 561
  • [40] XENOBIOTIC BIOTRANSFORMATION IN THE PACIFIC OYSTER (CRASSOSTREA-GIGAS)
    SCHLENK, D
    BUHLER, DR
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-PHARMACOLOGY TOXICOLOGY & ENDOCRINOLOGY, 1989, 94 (02): : 469 - 475