TRIM21 ubiquitylates GPX4 and promotes ferroptosis to aggravate ischemia/reperfusion-induced acute kidney injury

被引:31
|
作者
Sun, Xiaolin [1 ]
Huang, Ning [1 ]
Li, Peng [1 ]
Dong, Xinyi [1 ]
Yang, Jiahong [1 ]
Zhang, Xuemei [1 ]
Zong, Wei-Xing [2 ]
Gao, Shenglan [3 ]
Xin, Hong [1 ,4 ]
机构
[1] Fudan Univ, Sch Pharm, Dept Pharmacol, Shanghai 201203, Peoples R China
[2] Rutgers State Univ, Ernest Mario Sch Pharm, Dept Chem Biol, Piscataway, NJ 08854 USA
[3] Fudan Univ, Sch Basic Med Sci, Dept Cellular & Genet Med, Shanghai 200032, Peoples R China
[4] Fudan Univ, Sch Pharm, Dept Pharmacol, 826 Zhangheng Rd, Shanghai 201203, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
TRIM21; GPX4; Ferroptosis; AKI; Ubiquitination degradation; NF-KAPPA-B; CELL-DEATH; IRON; REGULATOR; PROTEINS;
D O I
10.1016/j.lfs.2023.121608
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Aims: This study aims to verify the molecular mechanism that Tripartite motif containing 21 (TRIM21) promotes ubiquitination degradation of glutathione peroxidase 4 (GPX4) by regulating ferroptosis, and to discuss the feasibility of TRIM21 as a new therapeutic target for acute kidney injury (AKI).Materials and methods: Ischemia-reperfusion (I/R)-AKI model was constructed using Trim21+/+ and Trim21-/-mice, and the expression of markers associated with kidney injury and ferroptosis were evaluated. HK-2 cells were treated by RSL3 and Erastin, and a hypoxia/reoxygenation (H/R) model was constructed to simulate I/R injury in vivo.Key findings: In vivo, TRIM21 is highly expressed in I/R kidney tissues. Loss of TRIM21 alleviated I/R-AKI and improved renal function. The upregulation of GPX4, a key ferroptosis regulator, and the mild mitochondrial damage suggested that loss of TRIM21 had a negative regulation of ferroptosis. In vitro, TRIM21 was highly expressed in H/R models, and overexpression of TRIM21 in HK-2 cells increased ROS production, promoted intracellular iron accumulation, and boosted cellular sensitivity to RSL3 and Erastin. Mechanistically, we confirmed that GPX4 is a substrate of TRIM21 and can be degraded by TRIM21-mediated ubiquitination, sug-gesting that inhibiting TRIM21 attenuates ferroptosis. A JAK2 inhibitor Fedratinib downregulated TRIM21 expression and reduced damage both in vivo and in vitro, which is correlated with the upregulation of GPX4.Significance: Our study showed that loss of TRIM21 could alleviate ferroptosis induced by I/R, revealed the mechanism of ubiquitination degradation of GPX4 by TRIM21 and suggested TRIM21 is a potential target for the treatment of AKI.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Effect of ukrain on ischemia/reperfusion-induced kidney injury in rats
    Aras, Bekir
    Akcilar, Raziye
    Kocak, F. Emel
    Kocak, Havva
    Savran, Bircan
    Metineren, Huseyin
    Karakus, Yasin Tugrul
    Yucel, Mehmet
    JOURNAL OF SURGICAL RESEARCH, 2016, 202 (02) : 267 - 275
  • [42] Ginsenoside Rg3 attenuates myocardial ischemia/reperfusion-induced ferroptosis via the keap1/Nrf2/GPX4 signaling pathway
    Zhong, Guofu
    Chen, Junteng
    Li, Yangtao
    Han, Yue
    Wang, Maosheng
    Nie, Qinqi
    Xu, Mujuan
    Zhu, Qinghua
    Chang, Xiao
    Wang, Ling
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2024, 24 (01)
  • [43] Fucoidan Ameliorates Ferroptosis in Ischemia-reperfusion-induced Liver Injury through Nrf2/HO-1/GPX4 Activation
    Li, Jing-Jing
    Xu, Wen-Qiang
    Li, Yue-Yue
    Guo, Chuan-Yong
    Xu, Xuan-Fu
    JOURNAL OF CLINICAL AND TRANSLATIONAL HEPATOLOGY, 2023, 11 (06) : 1341 - 1354
  • [44] RXRγ attenuates cerebral ischemia-reperfusion induced ferroptosis in neurons in mice through transcriptionally promoting the expression of GPX4
    Yang, Lei
    Du, Baoshun
    Zhang, Shitao
    Wang, Maode
    METABOLIC BRAIN DISEASE, 2022, 37 (05) : 1351 - 1363
  • [45] Chronic central leptin administration attenuates kidney dysfunction and injury in a model of ischemia/reperfusion-induced acute kidney injury
    Luna-Suarez, Emilio
    da Silva, Alexandre
    Wang, Zhen
    Mouton, Alan
    Dai, Xuemei
    PHYSIOLOGY, 2024, 39
  • [46] Shenmai Injection Attenuates Myocardial Ischemia/Reperfusion Injury by Targeting Nrf2/GPX4 Signalling-Mediated Ferroptosis
    Sheng-lan Mei
    Zhong-yuan Xia
    Zhen Qiu
    Yi-fan Jia
    Jin-jian Zhou
    Bin Zhou
    Chinese Journal of Integrative Medicine, 2022, 28 : 983 - 991
  • [47] Shenmai Injection Attenuates Myocardial Ischemia/Reperfusion Injury by Targeting Nrf2/GPX4 Signalling-Mediated Ferroptosis
    MEI Sheng-lan
    XIA Zhong-yuan
    QIU Zhen
    JIA Yi-fan
    ZHOU Jin-jian
    ZHOU Bin
    Chinese Journal of Integrative Medicine , 2022, (11) : 983 - 991
  • [48] Alliin mitigates the acute kidney injury by suppressing ferroptosis via regulating the Nrf2/GPX4 axis
    Jiang, Chunling
    Huang, Huaying
    Zhong, Chonghui
    Feng, Songtao
    Wang, Chunlei
    Xue, Huajun
    Zhang, Jing
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2025, 398 (02) : 1521 - 1533
  • [49] Shenmai Injection Attenuates Myocardial Ischemia/Reperfusion Injury by Targeting Nrf2/GPX4 Signalling-Mediated Ferroptosis
    MEI Sheng-lan
    XIA Zhong-yuan
    QIU Zhen
    JIA Yi-fan
    ZHOU Jin-jian
    ZHOU Bin
    Chinese Journal of Integrative Medicine, 2022, 28 (11) : 983 - 991
  • [50] Shenmai Injection Attenuates Myocardial Ischemia/Reperfusion Injury by Targeting Nrf2/GPX4 Signalling-Mediated Ferroptosis
    Mei Sheng-lan
    Xia Zhong-yuan
    Qiu Zhen
    Jia Yi-fan
    Zhou Jin-jian
    Zhou Bin
    CHINESE JOURNAL OF INTEGRATIVE MEDICINE, 2022, 28 (11) : 983 - 991