Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis

被引:27
|
作者
Din, Munaib [1 ]
Agarwal, Siddharth [1 ]
Grzeda, Mariusz [1 ]
Wood, David A. [1 ]
Modat, Marc [1 ]
Booth, Thomas C. [1 ,2 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Kings Coll Hosp NHS Fdn Trust, Dept Neuroradiol, London, England
基金
英国惠康基金;
关键词
Aneurysm; Angiography; Brain; CT Angiography; Magnetic Resonance Angiography; artificial intelligence; deep learning; machine learning; COMPUTER-AIDED DIAGNOSIS; UNRUPTURED INTRACRANIAL ANEURYSMS; MR-ANGIOGRAPHY; ASSISTED DETECTION; ACCURACY; AGE; VALIDATION; FRAMEWORK; TIME; SEX;
D O I
10.1136/jnis-2022-019456
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
BackgroundSubarachnoid hemorrhage from cerebral aneurysm rupture is a major cause of morbidity and mortality. Early aneurysm identification, aided by automated systems, may improve patient outcomes. Therefore, a systematic review and meta-analysis of the diagnostic accuracy of artificial intelligence (AI) algorithms in detecting cerebral aneurysms using CT, MRI or DSA was performed. MethodsMEDLINE, Embase, Cochrane Library and Web of Science were searched until August 2021. Eligibility criteria included studies using fully automated algorithms to detect cerebral aneurysms using MRI, CT or DSA. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis: Diagnostic Test Accuracy (PRISMA-DTA), articles were assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis included a bivariate random-effect model to determine pooled sensitivity, specificity, and area under the receiver operator characteristic curve (ROC-AUC). PROSPERO: CRD42021278454. Results43 studies were included, and 41/43 (95%) were retrospective. 34/43 (79%) used AI as a standalone tool, while 9/43 (21%) used AI assisting a reader. 23/43 (53%) used deep learning. Most studies had high bias risk and applicability concerns, limiting conclusions. Six studies in the standalone AI meta-analysis gave (pooled) 91.2% (95% CI 82.2% to 95.8%) sensitivity; 16.5% (95% CI 9.4% to 27.1%) false-positive rate (1-specificity); 0.936 ROC-AUC. Five reader-assistive AI studies gave (pooled) 90.3% (95% CI 88.0% - 92.2%) sensitivity; 7.9% (95% CI 3.5% to 16.8%) false-positive rate; 0.910 ROC-AUC. ConclusionAI has the potential to support clinicians in detecting cerebral aneurysms. Interpretation is limited due to high risk of bias and poor generalizability. Multicenter, prospective studies are required to assess AI in clinical practice.
引用
收藏
页码:262 / +
页数:12
相关论文
共 50 条
  • [21] Artificial intelligence for classification and detection of oral mucosa lesions on photographs: a systematic review and meta-analysis
    Rata Rokhshad
    Hossein Mohammad-Rahimi
    Jeffery B. Price
    Reyhaneh Shoorgashti
    Zahra Abbasiparashkouh
    Mahdieh Esmaeili
    Bita Sarfaraz
    Arad Rokhshad
    Saeed Reza Motamedian
    Parisa Soltani
    Falk Schwendicke
    Clinical Oral Investigations, 28
  • [22] Evaluation of Artificial Intelligence Algorithms for Diabetic Retinopathy Detection: Protocol for a Systematic Review and Meta-Analysis
    Sesgundo III, Jaime Angeles
    Maeng, David Collin
    Tukay, Jumelle Aubrey
    Ascano, Maria Patricia
    Suba-Cohen, Justine
    Sampang, Virginia
    JMIR RESEARCH PROTOCOLS, 2024, 13
  • [23] Use of artificial intelligence improves colonoscopy performance in adenoma detection: A systematic review and meta-analysis
    Makar, Jonathan
    Abdelmalak, Jonathan
    Con, Danny
    Hafeez, Bilal
    Garg, Mayur
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2024, 39 : 337 - 337
  • [24] Artificial intelligence for the detection of glaucoma with SD-OCT images: a systematic review and Meta-analysis
    Shi, Nan-Nan
    Li, Jing
    Liu, Guang-Hui
    Cao, Ming-Fang
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2024, 17 (03) : 408 - 419
  • [25] Diagnostic performance of artificial intelligence in detection of renal cell carcinoma: a systematic review and meta-analysis
    Gouravani, Mahdi
    Farahani, Mohammad Shahrabi
    Salehi, Mohammad Amin
    Shojaei, Shayan
    Mirakhori, Sina
    Harandi, Hamid
    Mohammadi, Soheil
    Saleh, Ramy R.
    BMC CANCER, 2025, 25 (01)
  • [26] Use of artificial intelligence improves colonoscopy performance in adenoma detection: a systematic review and meta-analysis
    Makar, Jonathan
    Abdelmalak, Jonathan
    Con, Danny
    Hafeez, Bilal
    Garg, Mayur
    GASTROINTESTINAL ENDOSCOPY, 2025, 101 (01)
  • [27] Artificial Intelligence for Detecting Cephalometric Landmarks: A Systematic Review and Meta-analysis
    Tavares Borges Mesquita, Germana de Queiroz
    Vieira, Walbert A.
    Campos Vidigal, Maria Tereza
    Nassif Travencolo, Bruno Augusto
    Beaini, Thiago Leite
    Spin-Neto, Rubens
    Paranhos, Luiz Renato
    de Brito Junior, Rui Barbosa
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (03) : 1158 - 1179
  • [28] Artificial Intelligence in Acute Stroke Care: A Systematic Review Meta-Analysis
    Dadoo, Sonali
    Zebrowitz, Elan
    Brabant, Paige
    Uddin, Anaz
    Aifuwa, Esewi
    Maraia, Danielle
    Etienne, Mill
    Yakubov, Neriy
    Babu, Myoungmee
    Babu, Benson
    ANNALS OF NEUROLOGY, 2024, 96 : S172 - S173
  • [29] Application of artificial intelligence in laryngeal lesions: a systematic review and meta-analysis
    Marrero-Gonzalez, Alejandro R.
    Diemer, Tanner J.
    Nguyen, Shaun A.
    Camilon, Terence J. M.
    Meenan, Kirsten
    O'Rourke, Ashli
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2025, 282 (03) : 1543 - 1555
  • [30] Artificial intelligence for detecting periapical radiolucencies: A systematic review and meta-analysis
    Pul, Utku
    Schwendicke, Falk
    JOURNAL OF DENTISTRY, 2024, 147