Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer

被引:47
|
作者
Chen, Yangzi [1 ]
Wang, Bohong [1 ,2 ]
Zhao, Yizi [1 ]
Shao, Xinxin [3 ]
Wang, Mingshuo [1 ,2 ]
Ma, Fuhai [3 ,4 ]
Yang, Laishou [5 ]
Nie, Meng [1 ]
Jin, Peng [3 ,6 ]
Yao, Ke [1 ]
Song, Haibin [7 ]
Lou, Shenghan [5 ]
Wang, Hang [5 ]
Yang, Tianshu [8 ,9 ]
Tian, Yantao [3 ]
Han, Peng [10 ,11 ]
Hu, Zeping [1 ,2 ]
机构
[1] Tsinghua Univ, Sch Pharmaceut Sci, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Peking Joint Ctr Life Sci, Beijing 100084, Peoples R China
[3] Chinese Acad Med Sci, Natl Canc Ctr, Natl Clin Res Ctr Canc, Canc Hosp,Peking Union Med Coll, Beijing 100730, Peoples R China
[4] Chinese Acad Med Sci, Natl Ctr Gerontol, Inst Geriatr Med, Dept Gen Surg,Dept Gastrointestinal Surg,Beijing H, Beijing 100730, Peoples R China
[5] Harbin Med Univ, Canc Hosp, Dept Colorectal Surg, Harbin 150081, Peoples R China
[6] Tianjin Med Univ, Tianjins Clin Res Ctr Canc, Key Lab Canc Prevent & Therapy, Dept Gastroenterol,Canc Inst & Hosp,Natl Clin Res, Tianjin 300060, Peoples R China
[7] Harbin Med Univ, Canc Hosp, Dept Gastrointestinal Surg, Harbin 150081, Peoples R China
[8] Fudan Univ, Inst Metab & Integrat Biol, Inst Biomed Sci, Shanghai Key Lab Metab Remodeling & Hlth, Shanghai 200032, Peoples R China
[9] Shanghai Qi Zhi Inst, Shanghai 200438, Peoples R China
[10] Harbin Med Univ, Dept Oncol Surg, Canc Hosp, Harbin 150081, Peoples R China
[11] Key Lab Tumor Immunol Heilongjiang, Harbin 150081, Peoples R China
基金
中国国家自然科学基金;
关键词
LARGE-SCALE; BIOMARKERS; REVEALS; IDENTIFICATION; VALIDATION; NEOPTERIN; PATHWAYS; STAGE; RISK;
D O I
10.1038/s41467-024-46043-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gastric cancer (GC) represents a significant burden of cancer-related mortality worldwide, underscoring an urgent need for the development of early detection strategies and precise postoperative interventions. However, the identification of non-invasive biomarkers for early diagnosis and patient risk stratification remains underexplored. Here, we conduct a targeted metabolomics analysis of 702 plasma samples from multi-center participants to elucidate the GC metabolic reprogramming. Our machine learning analysis reveals a 10-metabolite GC diagnostic model, which is validated in an external test set with a sensitivity of 0.905, outperforming conventional methods leveraging cancer protein markers (sensitivity < 0.40). Additionally, our machine learning-derived prognostic model demonstrates superior performance to traditional models utilizing clinical parameters and effectively stratifies patients into different risk groups to guide precision interventions. Collectively, our findings reveal the metabolic landscape of GC and identify two distinct biomarker panels that enable early detection and prognosis prediction respectively, thus facilitating precision medicine in GC.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Predicting postoperative gastric cancer prognosis based on inflammatory factors and machine learning technology
    Zhou, Cheng-Mao
    Wang, Ying
    Yang, Jian-Jun
    Zhu, Yu
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [22] Predicting postoperative gastric cancer prognosis based on inflammatory factors and machine learning technology
    Cheng-Mao Zhou
    Ying Wang
    Jian-Jun Yang
    Yu Zhu
    BMC Medical Informatics and Decision Making, 23
  • [23] Potentials of circSOBP in the diagnosis and prognosis of gastric cancer
    Yan, Xisheng
    Wang, Jian
    Bai, Yuqiang
    SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, 2022, 57 (11) : 1344 - 1348
  • [24] Machine Learning and Cancer Diagnosis
    Adamson, Adewole S.
    SCIENTIST, 2021, 35 (02): : 14 - 15
  • [25] Phosphoglycerate dehydrogenase is a novel predictor for poor prognosis in gastric cancer
    Xian, Yun
    Zhang, Shu
    Wang, Xudong
    Qin, Jin
    Wang, Wei
    Wu, Han
    ONCOTARGETS AND THERAPY, 2016, 9 : 5553 - 5560
  • [26] ADAMTSL2 is an independent predictor for the prognosis of gastric cancer
    Xiuling Zhu
    Zhongyuan Cui
    Shasha Li
    Yingzhen She
    Zhixian Wu
    Discover Oncology, 16 (1)
  • [27] New approaches to the diagnosis of gastric cancer by mass spectrometry and machine learning.
    Nakayama, Takashi
    Saito, Ryo
    Takahashi, Kazunori
    Yamamoto, Atsushi
    Takiguchi, Koichi
    Maruyama, Suguru
    Ashizawa, Naoki
    Shoda, Katsutoshi
    Nakayama, Yuko
    Furuya, Shinji
    Takeda, Sen
    Ichikawa, Daisuke
    CANCER SCIENCE, 2021, 112 : 880 - 880
  • [28] Multi-omics Combined with Machine Learning Facilitating the Diagnosis of Gastric Cancer
    Li, Jie
    Xu, Siyi
    Zhu, Feng
    Shen, Fei
    Zhang, Tianyi
    Wan, Xin
    Gong, Saisai
    Liang, Geyu
    Zhou, Yonglin
    CURRENT MEDICINAL CHEMISTRY, 2024, 31 (40) : 6692 - 6712
  • [29] Combining Raman spectroscopy and machine learning to assist early diagnosis of gastric cancer
    Li, Chenming
    Liu, Shasha
    Zhang, Qian
    Wan, Dongdong
    Shen, Rong
    Wang, Zhong
    Li, Yuee
    Hu, Bin
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 287
  • [30] Diagnosis of Gastric Cancer Using Machine Learning Techniques in Healthcare Sector: A Survey
    Jamil, Danish
    Palaniappan, Sellappan
    Lokman, Asiah
    Jamil, Danish
    Naseem, Muhammad
    Zia, Syed Saood
    INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2021, 45 (07): : 147 - 166