Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer

被引:47
|
作者
Chen, Yangzi [1 ]
Wang, Bohong [1 ,2 ]
Zhao, Yizi [1 ]
Shao, Xinxin [3 ]
Wang, Mingshuo [1 ,2 ]
Ma, Fuhai [3 ,4 ]
Yang, Laishou [5 ]
Nie, Meng [1 ]
Jin, Peng [3 ,6 ]
Yao, Ke [1 ]
Song, Haibin [7 ]
Lou, Shenghan [5 ]
Wang, Hang [5 ]
Yang, Tianshu [8 ,9 ]
Tian, Yantao [3 ]
Han, Peng [10 ,11 ]
Hu, Zeping [1 ,2 ]
机构
[1] Tsinghua Univ, Sch Pharmaceut Sci, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Peking Joint Ctr Life Sci, Beijing 100084, Peoples R China
[3] Chinese Acad Med Sci, Natl Canc Ctr, Natl Clin Res Ctr Canc, Canc Hosp,Peking Union Med Coll, Beijing 100730, Peoples R China
[4] Chinese Acad Med Sci, Natl Ctr Gerontol, Inst Geriatr Med, Dept Gen Surg,Dept Gastrointestinal Surg,Beijing H, Beijing 100730, Peoples R China
[5] Harbin Med Univ, Canc Hosp, Dept Colorectal Surg, Harbin 150081, Peoples R China
[6] Tianjin Med Univ, Tianjins Clin Res Ctr Canc, Key Lab Canc Prevent & Therapy, Dept Gastroenterol,Canc Inst & Hosp,Natl Clin Res, Tianjin 300060, Peoples R China
[7] Harbin Med Univ, Canc Hosp, Dept Gastrointestinal Surg, Harbin 150081, Peoples R China
[8] Fudan Univ, Inst Metab & Integrat Biol, Inst Biomed Sci, Shanghai Key Lab Metab Remodeling & Hlth, Shanghai 200032, Peoples R China
[9] Shanghai Qi Zhi Inst, Shanghai 200438, Peoples R China
[10] Harbin Med Univ, Dept Oncol Surg, Canc Hosp, Harbin 150081, Peoples R China
[11] Key Lab Tumor Immunol Heilongjiang, Harbin 150081, Peoples R China
基金
中国国家自然科学基金;
关键词
LARGE-SCALE; BIOMARKERS; REVEALS; IDENTIFICATION; VALIDATION; NEOPTERIN; PATHWAYS; STAGE; RISK;
D O I
10.1038/s41467-024-46043-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gastric cancer (GC) represents a significant burden of cancer-related mortality worldwide, underscoring an urgent need for the development of early detection strategies and precise postoperative interventions. However, the identification of non-invasive biomarkers for early diagnosis and patient risk stratification remains underexplored. Here, we conduct a targeted metabolomics analysis of 702 plasma samples from multi-center participants to elucidate the GC metabolic reprogramming. Our machine learning analysis reveals a 10-metabolite GC diagnostic model, which is validated in an external test set with a sensitivity of 0.905, outperforming conventional methods leveraging cancer protein markers (sensitivity < 0.40). Additionally, our machine learning-derived prognostic model demonstrates superior performance to traditional models utilizing clinical parameters and effectively stratifies patients into different risk groups to guide precision interventions. Collectively, our findings reveal the metabolic landscape of GC and identify two distinct biomarker panels that enable early detection and prognosis prediction respectively, thus facilitating precision medicine in GC.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer
    Yangzi Chen
    Bohong Wang
    Yizi Zhao
    Xinxin Shao
    Mingshuo Wang
    Fuhai Ma
    Laishou Yang
    Meng Nie
    Peng Jin
    Ke Yao
    Haibin Song
    Shenghan Lou
    Hang Wang
    Tianshu Yang
    Yantao Tian
    Peng Han
    Zeping Hu
    Nature Communications, 15
  • [2] A Machine Learning-Based Prognostic Predictor for Gastric Cancer
    Abdelwahed, Mohammed
    Geetha, Saroja Devi
    Ali, Amr
    Milkis, Dmitriy
    Ucar, Busra Uzun
    Madu, Chika
    Ucar, Ebubekir
    Sham, Sunder
    Rishi, Arvind
    Vitkovski, Taisia
    LABORATORY INVESTIGATION, 2024, 104 (03) : S1547 - S1548
  • [3] Machine Learning for Lung Cancer Diagnosis,Treatment, and Prognosis
    Yawei Li
    Xin Wu
    Ping Yang
    Guoqian Jiang
    Yuan Luo
    Genomics,Proteomics & Bioinformatics, 2022, Proteomics & Bioinformatics2022 (05) : 850 - 866
  • [4] Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis
    Li, Yawei
    Wu, Xin
    Yang, Ping
    Jiang, Guoqian
    Luo, Yuan
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2022, 20 (05) : 850 - 866
  • [5] Machine Learning Approaches for Breast Cancer Diagnosis and Prognosis
    Sharma, Ayush
    Kulshrestha, Sudhanshu
    Daniel, Sibi
    2017 INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS (ICSOFTCOMP), 2017,
  • [6] Machine Learning Predictor of Immune Checkpoint Blockade Response in Gastric Cancer
    Sung, Ji-Yong
    Cheong, Jae-Ho
    CANCERS, 2022, 14 (13)
  • [7] Brain Cancer Diagnosis and Enhancing Prognosis with Machine Learning and Imaging
    Miao, K. H.
    Miao, J. H.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2024, 72 (01)
  • [8] Transcription factor expression as a predictor of colon cancer prognosis: a machine learning practice
    Jiannan Liu
    Chuanpeng Dong
    Guanglong Jiang
    Xiaoyu Lu
    Yunlong Liu
    Huanmei Wu
    BMC Medical Genomics, 13
  • [9] Transcription factor expression as a predictor of colon cancer prognosis: a machine learning practice
    Liu, Jiannan
    Dong, Chuanpeng
    Jiang, Guanglong
    Lu, Xiaoyu
    Liu, Yunlong
    Wu, Huanmei
    BMC MEDICAL GENOMICS, 2020, 13 (Suppl 9)
  • [10] Machine learning reveals glycolytic key gene in gastric cancer prognosis
    Li, Nan
    Zhang, Yuzhe
    Zhang, Qianyue
    Jin, Hao
    Han, Mengfei
    Guo, Junhan
    Zhang, Ye
    SCIENTIFIC REPORTS, 2025, 15 (01):