Recurrent Self Fusion: Iterative Denoising for Consistent Retinal OCT Segmentation

被引:1
|
作者
Wei, Shuwen [1 ]
Liu, Yihao [1 ]
Bian, Zhangxing [1 ]
Wang, Yuli [2 ]
Zuo, Lianrui [1 ,3 ]
Calabresi, Peter A. [4 ]
Saidha, Shiv [4 ]
Prince, Jerry L. [1 ]
Carass, Aaron [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21287 USA
[3] NIA, NIH, Lab Behav Neurosci, Baltimore, MD 21224 USA
[4] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21287 USA
关键词
Optical coherence tomography; Denoise; Segmentation; MULTIPLE-SCLEROSIS; LAYER THICKNESS; IMAGES;
D O I
10.1007/978-3-031-44013-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical coherence tomography (OCT) is a valuable imaging technique in ophthalmology, providing high-resolution, cross-sectional images of the retina for early detection and monitoring of various retinal and neurological diseases. However, discrepancies in retinal layer thickness measurements among different OCT devices pose challenges for data comparison and interpretation, particularly in longitudinal analyses. This work introduces the idea of a recurrent self fusion (RSF) algorithm to address this issue. Our RSF algorithm, built upon the self fusion methodology, iteratively denoises retinal OCT images. A deep learning-based retinal OCT segmentation algorithm is employed for downstream analyses. A large dataset of paired OCT scans acquired on both a Spectralis and Cirrus OCT device are used for validation. The results demonstrate that the RSF algorithm effectively reduces speckle contrast and enhances the consistency of retinal OCT segmentation.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 50 条
  • [31] Segmentation of the surfaces of the retinal layer from OCT images
    Haeker, Mona
    Abramoff, Michael
    Kardon, Randy
    Sonka, Milan
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 1, 2006, 4190 : 800 - 807
  • [32] Recurrent Iterative Gating Networks for Semantic Segmentation
    Karim, Rezaul
    Islam, Md Amirul
    Bruce, Neil D. B.
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 1070 - 1079
  • [33] Denoising methods for improving automatic segmentation in OCT images of human eye
    Stankiewicz, A.
    Marciniak, T.
    Dabrowski, A.
    Stopa, M.
    Rakowicz, P.
    Marciniak, E.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2017, 65 (01) : 71 - 78
  • [34] Performance Evaluation of Various Denoising Filters and segmentation methods for OCT images
    Chaari, Abir
    Kammoun, Khouloud
    Kallel, Imen Fourati
    Frikha, Mondher
    Kammoun, Sonda
    Feki, Jamel
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [35] Automated segmentation of retinal nerve fiber layer excluding retinal blood vessels: integrating OCT and OCT Angiography
    Airaldi, Matteo
    Oakley, Jonathan D.
    Bochicchio, Sara
    Dipinto, Angelica
    Prandoni, Simona
    Staurenghi, Giovanni
    Triolo, Giacinto
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [36] MF-Net: Multi-Scale Information Fusion Network for CNV Segmentation in Retinal OCT Images
    Meng, Qingquan
    Wang, Lianyu
    Wang, Tingting
    Wang, Meng
    Zhu, Weifang
    Shi, Fei
    Chen, Zhongyue
    Chen, Xinjian
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [37] FNeXter: A Multi-Scale Feature Fusion Network Based on ConvNeXt and Transformer for Retinal OCT Fluid Segmentation
    Niu, Zhiyuan
    Deng, Zhuo
    Gao, Weihao
    Bai, Shurui
    Gong, Zheng
    Chen, Chucheng
    Rong, Fuju
    Li, Fang
    Ma, Lan
    SENSORS, 2024, 24 (08)
  • [38] OCT2Former: A retinal OCT-angiography vessel segmentation transformer
    Tan, Xiao
    Chen, Xinjian
    Meng, Qingquan
    Shi, Fei
    Xiang, Dehui
    Chen, Zhongyue
    Pan, Lingjiao
    Zhu, Weifang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 233
  • [39] Denoising Diffusion Probabilistic Model for Retinal Image Generation and Segmentation
    Alimanov, Alnur
    Islam, Md Baharul
    2023 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY, ICCP, 2023,
  • [40] Denoising and Segmentation of Retinal Layers In Optical Coherence Tomography images
    Dash, Puspita
    Sigappi, A. N.
    INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, MATERIALS AND APPLIED SCIENCE, 2018, 1952