Recurrent Self Fusion: Iterative Denoising for Consistent Retinal OCT Segmentation

被引:1
|
作者
Wei, Shuwen [1 ]
Liu, Yihao [1 ]
Bian, Zhangxing [1 ]
Wang, Yuli [2 ]
Zuo, Lianrui [1 ,3 ]
Calabresi, Peter A. [4 ]
Saidha, Shiv [4 ]
Prince, Jerry L. [1 ]
Carass, Aaron [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21287 USA
[3] NIA, NIH, Lab Behav Neurosci, Baltimore, MD 21224 USA
[4] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21287 USA
关键词
Optical coherence tomography; Denoise; Segmentation; MULTIPLE-SCLEROSIS; LAYER THICKNESS; IMAGES;
D O I
10.1007/978-3-031-44013-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical coherence tomography (OCT) is a valuable imaging technique in ophthalmology, providing high-resolution, cross-sectional images of the retina for early detection and monitoring of various retinal and neurological diseases. However, discrepancies in retinal layer thickness measurements among different OCT devices pose challenges for data comparison and interpretation, particularly in longitudinal analyses. This work introduces the idea of a recurrent self fusion (RSF) algorithm to address this issue. Our RSF algorithm, built upon the self fusion methodology, iteratively denoises retinal OCT images. A deep learning-based retinal OCT segmentation algorithm is employed for downstream analyses. A large dataset of paired OCT scans acquired on both a Spectralis and Cirrus OCT device are used for validation. The results demonstrate that the RSF algorithm effectively reduces speckle contrast and enhances the consistency of retinal OCT segmentation.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 50 条
  • [1] Retinal OCT Denoising with Pseudo-Multimodal Fusion Network
    Hu, Dewei
    Malone, Joseph D.
    Atay, Yigit
    Tao, Yuankai K.
    Oguz, Ipek
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2020, 2020, 12069 : 125 - 135
  • [2] Self-attention CNN for retinal layer segmentation in OCT
    Cao, Guogang
    Wu, Yan
    Peng, Zeyu
    Zhou, Zhilin
    Dai, Cuixia
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (03) : 1605 - 1617
  • [3] Local Self-Similar Solution of ADMM for Denoising of Retinal OCT Images
    Tajmirriahi, Mahnoosh
    Amini, Zahra
    Rabbani, Hossein
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 8
  • [4] Pretraining of 3D image segmentation models for retinal OCT using denoising-based self-supervised learning
    Rivail, Antoine
    Araujo, Teresa
    Schmidt-erfurth, Ursula
    Bogunovic, Hrvoje
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (09): : 5025 - 5040
  • [5] Denoising Method of Retinal OCT Images Based on Modularized Denoising Autoencoder
    Dai Hao
    Yang Yaliang
    Yue Xian
    Chen Shen
    ACTA OPTICA SINICA, 2023, 43 (01)
  • [6] Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search
    Kugelman, Jason
    Alonso-Caneiro, David
    Read, Scott A.
    Vincent, Stephen J.
    Collins, Michael J.
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (11): : 5759 - 5777
  • [7] Peripapillary Retinal Segmentation in OCT Angiography
    Hanna, Verina
    Sharpe, Glen P.
    West, Michael E.
    Hutchison, Donna M.
    Shuba, Lesya M.
    Rafuse, Paul E.
    Nicolela, Marcelo T.
    Smith, Corey A.
    Chauhan, Balwantray C.
    OPHTHALMOLOGY, 2020, 127 (12) : 1770 - 1772
  • [8] Filtering and Segmentation of Retinal OCT Images
    Aleman-Flores, Miguel
    Aleman-Flores, Rafael
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2017, PT II, 2018, 10672 : 289 - 296
  • [9] Context attention-and-fusion network for multiclass retinal fluid segmentation in OCT images
    Ye, Yanqing
    Chen, Xinjian
    Shi, Fei
    Xiang, Dehui
    Pan, Lingjiao
    Zhu, Weifang
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [10] Deep iterative vessel segmentation in OCT angiography
    Pissas, Theodoros
    Bloch, Edward
    Cardoso, Machado Jorge
    Flores, Blanca
    Georgiadis, Odysseas
    Jalali, Sepehr
    Ravasio, Claudio
    Stoyanov, Danail
    Cruz, Lyndon
    Bergeles, Christos
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (05): : 2490 - 2510