Machine learning the microscopic form of nematic order in twisted double-bilayer graphene

被引:3
|
作者
Sobral, Joo Augusto [1 ,2 ]
Obernauer, Stefan [2 ]
Turkel, Simon [3 ]
Pasupathy, Abhay N. [3 ,4 ]
Scheurer, Mathias S. [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 3, D-70550 Stuttgart, Germany
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[3] Columbia Univ, Dept Phys, New York, NY 10027 USA
[4] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
MAGIC-ANGLE; NETWORKS;
D O I
10.1038/s41467-023-40684-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modern scanning probe techniques, such as scanning tunneling microscopy, provide access to a large amount of data encoding the underlying physics of quantum matter. In this work, we show how convolutional neural networks can be used to learn effective theoretical models from scanning tunneling microscopy data on correlated moire superlattices. Moire systems are particularly well suited for this task as their increased lattice constant provides access to intra-unit-cell physics, while their tunability allows for the collection of high-dimensional data sets from a single sample. Using electronic nematic order in twisted double-bilayer graphene as an example, we show that incorporating correlations between the local density of states at different energies allows convolutional neural networks not only to learn the microscopic nematic order parameter, but also to distinguish it from heterostrain. These results demonstrate that neural networks are a powerful method for investigating the microscopic details of correlated phenomena in moire systems and beyond. Machine learning methods in condensed matter physics are an emerging tool for providing powerful analytical methods. Here, the authors demonstrate that convolutional neural networks can identify nematic electronic order from STM data of twisted double-layer graphene-even in the presence of heterostrain.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Machine learning the microscopic form of nematic order in twisted double-bilayer graphene
    João Augusto Sobral
    Stefan Obernauer
    Simon Turkel
    Abhay N. Pasupathy
    Mathias S. Scheurer
    [J]. Nature Communications, 14 (1)
  • [2] Electric-field-tunable electronic nematic order in twisted double-bilayer graphene
    Samajdar, Rhine
    Scheurer, Mathias S.
    Turkel, Simon
    Rubio-Verdu, Carmen
    Pasupathy, Abhay N.
    Venderbos, Jorn W. F.
    Fernandes, Rafael M.
    [J]. 2D MATERIALS, 2021, 8 (03)
  • [3] Microscopic pairing mechanism, order parameter, and disorder sensitivity in moire superlattices: Applications to twisted double-bilayer graphene
    Samajdar, Rhine
    Scheurer, Mathias S.
    [J]. PHYSICAL REVIEW B, 2020, 102 (06)
  • [4] Emergent Symmetry and Valley Chern Insulator in Twisted Double-Bilayer Graphene
    Wang, Yimeng
    Burg, G. William
    Lian, Biao
    Watanabe, Kenji
    Taniguchi, Takashi
    Bernevig, B. Andrei
    Tutuc, Emanuel
    [J]. Physical Review Letters, 2024, 133 (24)
  • [5] Phonon scattering induced carrier resistivity in twisted double-bilayer graphene
    Li, Xiao
    Wu, Fengcheng
    Das Sarma, S.
    [J]. PHYSICAL REVIEW B, 2020, 101 (24)
  • [6] Correlated electron-hole state in twisted double-bilayer graphene
    Rickhaus, Peter
    de Vries, Folkert K.
    Zhu, Jihang
    Portoles, Elias
    Zheng, Giulia
    Masseroni, Michele
    Kurzmann, Annika
    Taniguchi, Takashi
    Watanabe, Kenji
    MacDonald, Allan H.
    Ihn, Thomas
    Ensslin, Klaus
    [J]. SCIENCE, 2021, 373 (6560) : 1257 - +
  • [7] Moiré nematic phase in twisted double bilayer graphene
    Carmen Rubio-Verdú
    Simon Turkel
    Yuan Song
    Lennart Klebl
    Rhine Samajdar
    Mathias S. Scheurer
    Jörn W. F. Venderbos
    Kenji Watanabe
    Takashi Taniguchi
    Héctor Ochoa
    Lede Xian
    Dante M. Kennes
    Rafael M. Fernandes
    Ángel Rubio
    Abhay N. Pasupathy
    [J]. Nature Physics, 2022, 18 : 196 - 202
  • [8] Moire nematic phase in twisted double bilayer graphene
    Rubio-Verdu, Carmen
    Turkel, Simon
    Song, Yuan
    Klebl, Lennart
    Samajdar, Rhine
    Scheurer, Mathias S.
    Venderbos, Jorn W. F.
    Watanabe, Kenji
    Taniguchi, Takashi
    Ochoa, Hector
    Xian, Lede
    Kennes, Dante M.
    Fernandes, Rafael M.
    Rubio, Angel
    Pasupathy, Abhay N.
    [J]. NATURE PHYSICS, 2022, 18 (02) : 196 - +
  • [9] Visualizing localized nematic states in twisted double bilayer graphene
    Wang, Zhen-Yu
    Ma, Jia-Jun
    Chen, Qianqian
    Wu, Kefan
    Xu, Shuigang
    Dai, Qing
    Zhu, Zheng
    Ren, Jindong
    Gao, Hong-Jun
    Lin, Xiao
    [J]. NANOSCALE, 2024,
  • [10] Nematic superconductivity in twisted bilayer graphene
    Chichinadze, Dmitry, V
    Classen, Laura
    Chubukov, Andrey, V
    [J]. PHYSICAL REVIEW B, 2020, 101 (22)