Real-Time Big Data Analytics and Proactive Traffic Safety Management Visualization System

被引:9
|
作者
Abdel-Aty, Mohamed [1 ]
Zheng, Ou [1 ]
Wu, Yina [1 ]
Abdelraouf, Amr [1 ]
Rim, Heesub [1 ]
Li, Pei [1 ]
机构
[1] Univ Cent Florida, Dept Civil Environm & Construction Engn, Orlando, FL 32816 USA
关键词
Road safety system; Visualization; Real-time crash prediction; Proactive traffic management; Secondary crash prediction; Roadside cameras; Big data; VARIABLE-SPEED LIMITS; CRASH RISK; EXPRESSWAY RAMPS; PREDICTION; FREEWAYS; WEATHER; MODELS;
D O I
10.1061/JTEPBS.TEENG-7530
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Big data and data-driven analysis could be utilized for traffic management to improve road safety and the performance of transportation systems. This paper introduces a web-based proactive traffic safety management (PATM) and real-time big data visualization tool, which is based on an award-winning system that won the US Department of Transportation (USDOT) Solving for Safety Visualization Challenge and was selected as one of the USDOT Safety Data Initiative (SDI) Beta Tools. State-of-the-art research, especially for real-time crash prediction and PATM, are deployed in this study. A significant amount of real-time data is accessed by the system in order to conduct data-driven analysis, such as traffic data, weather data, and video data from closed-circuit television (CCTV) live streams. Based on the data, multiple modules have been developed, including real-time crash/secondary crash prediction, CCTV-based expedited detection, PATM recommendation, data sharing, and report generation. Both real-time data and the system outputs are visualized at the front end using interactive maps and various types of figures to represent the data distribution and efficiently reveal hidden patterns. Evaluation of the real-time crash prediction outputs is conducted based on one-month real-world crash data and the prediction results from the system. The comparison results indicate excellent prediction performance. When considering spatial-temporal tolerance, the sensitivity and false alarm rate of the prediction results [i.e., high crash potential event (HCPE)] are 0.802 and 0.252, respectively. Current and potential implementation are also discussed in this paper.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Improving hearing healthcare with Big Data analytics of real-time hearing aid data
    Christensen, Jeppe H.
    Pontoppidan, Niels H.
    Anisetti, Marco
    Bellandi, Valerio
    Cremonini, Marco
    2019 IEEE WORLD CONGRESS ON SERVICES (IEEE SERVICES 2019), 2019, : 307 - 313
  • [42] Real-Time Detection and Visualization of Traffic Conditions by Mining Twitter Data
    Khetarpaul, Sonia
    Sharma, Dolly
    Jose, Jackson I.
    Saragur, Mohith
    DATABASES THEORY AND APPLICATIONS (ADC 2022), 2022, 13459 : 141 - 152
  • [43] Urban Planning and Smart City Decision Management Empowered by Real-Time Data Processing Using Big Data Analytics
    Silva, Bhagya Nathali
    Khan, Murad
    Jung, Changsu
    Seo, Jihun
    Muhammad, Diyan
    Han, Jihun
    Yoon, Yongtak
    Han, Kijun
    SENSORS, 2018, 18 (09)
  • [44] Using a Rich Context Model for Real-Time Big Data Analytics in Twitter
    Sotsenko, Alisa
    Jansen, Marc
    Milrad, Marcelo
    Rana, Juwel
    2016 IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), 2016, : 228 - 233
  • [45] Real-time QoS Monitoring for Big Data Analytics in Mobile Environment: an Overview
    Xiao, Fang
    Wainaina, Paul
    2016 INTERNATIONAL CONGRESS ON COMPUTATION ALGORITHMS IN ENGINEERING (ICCAE 2016), 2016, : 26 - 30
  • [46] Using Big Data and Real-Time Analytics to Support Smart City Initiatives
    Souza, Arthur
    Figueredo, Mickael
    Cacho, Nelio
    Araujo, Daniel
    Prolo, Carlos A.
    IFAC PAPERSONLINE, 2016, 49 (30): : 257 - 262
  • [47] Integrating real-time traffic data in road safety analysis
    Christoforou, Zoi
    Cohen, Simon
    Karlaftis, Matthew G.
    TRANSPORT RESEARCH ARENA 2012, 2012, 48 : 2454 - 2463
  • [48] Enhancing Traffic Safety by Integrating Real-Time Infrastructure and Vehicle Data in a Cooperative System
    Din, Kashif
    ERCIM NEWS, 2008, (74): : 46 - 47
  • [49] Real-time big data analytics for hard disk drive predictive maintenance
    Su, Chuan-Jun
    Huang, Shi-Feng
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 71 : 93 - 101
  • [50] Towards Real-Time Road Traffiic Analytics using Telco Big Data
    Costa, Constantinos
    Chatzimilioudis, Georgios
    Zeinalipour-Yazti, Demetrios
    Mokbel, Mohamed F.
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL WORKSHOP ON REAL-TIME BUSINESS INTELLIGENCE AND ANALYTICS, 2017,