Biological research and self-driving labs in deep space supported by artificial intelligence

被引:17
|
作者
Sanders, Lauren M. [1 ]
Scott, Ryan T. [2 ]
Yang, Jason H. [3 ]
Qutub, Amina Ann [4 ]
Garcia Martin, Hector [5 ,6 ,7 ]
Berrios, Daniel C. [2 ]
Hastings, Jaden J. A. [8 ]
Rask, Jon [9 ]
Mackintosh, Graham [10 ]
Hoarfrost, Adrienne L. [11 ,12 ]
Chalk, Stuart [13 ]
Kalantari, John [14 ]
Khezeli, Kia [14 ]
Antonsen, Erik L. [15 ]
Babdor, Joel [16 ,17 ]
Barker, Richard [18 ]
Baranzini, Sergio E. [19 ]
Beheshti, Afshin [2 ]
Delgado-Aparicio, Guillermo M. [20 ]
Glicksberg, Benjamin S. [21 ]
Greene, Casey S. [22 ]
Haendel, Melissa [23 ]
Hamid, Arif A. [24 ]
Heller, Philip [25 ]
Jamieson, Daniel [26 ]
Jarvis, Katelyn J. [27 ]
Komarova, Svetlana V. [28 ]
Komorowski, Matthieu [29 ]
Kothiyal, Prachi [30 ]
Mahabal, Ashish [31 ]
Manor, Uri [32 ]
Mason, Christopher E. [8 ]
Matar, Mona [33 ]
Mias, George I. [34 ]
Miller, Jack [2 ]
Myers Jr, Jerry G. [33 ]
Nelson, Charlotte [19 ]
Oribello, Jonathan [1 ]
Park, Seung-min [35 ]
Parsons-Wingerter, Patricia [36 ]
Prabhu, R. K. [37 ]
Reynolds, Robert J. [38 ]
Saravia-Butler, Amanda [39 ]
Saria, Suchi [40 ,41 ]
Sawyer, Aenor [27 ]
Singh, Nitin Kumar [42 ]
Snyder, Michael [43 ]
Soboczenski, Frank [44 ]
Soman, Karthik [19 ]
Theriot, Corey A. [45 ,46 ]
机构
[1] NASA, Blue Marble Space Inst Sci, Space Biosci Div, Ames Res Ctr, Moffett Field, CA USA
[2] NASA, Space Biosci Div, KBR, Ames Res Ctr, Moffett Field, CA USA
[3] Rutgers New Jersey Med Sch, Ctr Emerging & Reemerging Pathogens, Dept Microbiol Biochem & Mol Genet, Newark, NJ USA
[4] Univ Texas San Antonio, Dept Biomed Engn, AI MATRIX Consortium, San Antonio, TX USA
[5] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA USA
[6] DOE Agile BioFoundry, Emeryville, CA USA
[7] Joint BioEnergy Inst, Emeryville, CA USA
[8] Weill Cornell Med, Dept Physiol & Biophys, New York, NY USA
[9] NASA, Off Ctr Director, Ames Res Ctr, Moffett Field, CA USA
[10] NASA, Bay Area Environm Res Inst, Ames Res Ctr, Moffett Field, CA USA
[11] Oak Ridge Assoc Univ ORAU, NASA, Space Biosci Div, Ames Res Ctr, Moffett Field, CA USA
[12] Univ Georgia, Dept Marine Sci, Athens, GA USA
[13] Univ North Florida, Dept Chem, Jacksonville, FL USA
[14] Mayo Clin, Ctr Individualized Med, Dept Surg, Dept Quantitat Hlth Sci, Rochester, MN USA
[15] Baylor Coll Med, Ctr Space Med, Dept Emergency Med, Houston, TX USA
[16] Univ Penn, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA USA
[17] Univ Penn, Inst Immunol, Perelman Sch Med, Philadelphia, PA USA
[18] Univ Wisconsin Madison, Gilroy Astrobiol Res Grp, Madison, WI USA
[19] Univ Calif San Francisco, Weill Inst Neurosci, Dept Neurol, San Francisco, CA USA
[20] Georgia Inst Technol, Data Sci Analyt, Lima, Peru
[21] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth Mt Sinai, Dept Genet & Genom Sci, New York, NY USA
[22] Univ Colorado, Ctr Hlth AI, Dept Biomed Informat, Sch Med, Anschutz Med Campus, Aurora, CO USA
[23] Univ Colorado, Ctr Hlth AI, Sch Med, Anschutz Med Campus, Aurora, CO USA
[24] Univ Minnesota, Dept Neurosci, Minneapolis, MN USA
[25] San Jose State Univ, Coll Sci, Dept Comp Sci, San Jose, CA USA
[26] Biorelate, Manchester, England
[27] Univ Calif San Francisco, Dept Orthopaed Surg, UC Space Hlth, San Francisco, CA USA
[28] McGill Univ, Fac Dent Med & Oral Hlth Sci, Montreal, PQ, Canada
[29] Imperial Coll London, Fac Med, Dept Surg & Canc, London, England
[30] NASA, SymbioSeq, Johnson Space Ctr, Ashburn, VA USA
[31] CALTECH, Ctr Data Driven Discovery, Pasadena, CA USA
[32] Salk Inst Biol Studies, Waitt Adv Biophoton Ctr, Chan Zuckerberg Imaging Sci, La Jolla, CA USA
[33] NASA, Human Res Program Cross Cutting Computat Modeling, John H Glenn Res Ctr, Cleveland, OH USA
[34] Michigan State Univ, Inst Quantitat Hlth Sci & Engn, Dept Biochem & Mol Biol, E Lansing, MI USA
[35] Stanford Univ, Dept Urol, Dept Radiol, Sch Med, Stanford, CA USA
[36] NASA, Low Explorat Grav Technol, John H Glenn Res Ctr, Cleveland, OH USA
[37] Univ Space Res Assoc USRA, NASA, Human Res Program Cross Cutting Computat Modeling, John H Glenn Res Ctr, Cleveland, OH USA
[38] Mortal Res & Consulting, Houston, TX USA
[39] NASA, Space Biosci Div, Logyx, Ames Res Ctr, Moffett Field, CA USA
[40] Johns Hopkins Univ, Comp Sci Stat & Hlth Policy, Baltimore, MD USA
[41] Bayesian Hlth, ML AI & Healthcare Lab, New York, NY USA
[42] Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA USA
[43] Stanford Sch Med, Dept Genet, Stanford, CA USA
[44] Kings Coll London, Med Fac, SPHES, London, England
[45] Univ Texas Med Branch, Dept Prevent Med & Community Hlth, Galveston, TX USA
[46] NASA Johnson Space Ctr, Human Hlth & Performance Directorate, Houston, TX USA
[47] CALTECH, Dept Biol, Pasadena, CA USA
[48] ISS Natl Lab, Ctr Advancement Sci Space, Melbourne, FL USA
[49] Univ Alabama Birmingham, UAB Ctr Computat Biol & Data Sci, Birmingham, AL USA
[50] Harvard Univ, Broad Inst MIT & Harvard, Harvard Med Sch, Dept Biomed Informat,Harvard Data Sci, Boston, MA USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
DATA RESOURCES; BIG DATA; SPACEFLIGHT; PHENOTYPE; SYSTEM; EXPERIMENTATION; REPRODUCIBILITY; INTEGRATION; EXPRESSION; CHALLENGES;
D O I
10.1038/s42256-023-00618-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep space exploration missions will require new technologies that can support astronaut health systems, as well as biological monitoring and research systems that can function independently from Earth-based mission control centres. A NASA workshop explored how artificial intelligence advances could help address these challenges and, in this second of two Review articles based on the findings from the workshop, the intersection between artificial intelligence and space biology is discussed. Space biology research aims to understand fundamental spaceflight effects on organisms, develop foundational knowledge to support deep space exploration and, ultimately, bioengineer spacecraft and habitats to stabilize the ecosystem of plants, crops, microbes, animals and humans for sustained multi-planetary life. To advance these aims, the field leverages experiments, platforms, data and model organisms from both spaceborne and ground-analogue studies. As research is extended beyond low Earth orbit, experiments and platforms must be maximally automated, light, agile and intelligent to accelerate knowledge discovery. Here we present a summary of decadal recommendations from a workshop organized by the National Aeronautics and Space Administration on artificial intelligence, machine learning and modelling applications that offer solutions to these space biology challenges. The integration of artificial intelligence into the field of space biology will deepen the biological understanding of spaceflight effects, facilitate predictive modelling and analytics, support maximally automated and reproducible experiments, and efficiently manage spaceborne data and metadata, ultimately to enable life to thrive in deep space.
引用
收藏
页码:208 / 219
页数:12
相关论文
共 50 条
  • [21] Deep Autonomous Agents Comparison for Self-driving Cars
    Riboni, Alessandro
    Candelieri, Antonio
    Borrotti, Matteo
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT I, 2022, 13163 : 201 - 213
  • [22] TrustworthyAI: Adversarial Attacks and Defensive Strategies in Self-Driving Systems using Computer Vision and Artificial Intelligence
    Sun, Ethan
    Li, Ang
    2024 6TH INTERNATIONAL CONFERENCE ON BIG-DATA SERVICE AND INTELLIGENT COMPUTATION, BDSIC 2024, 2024, : 41 - 47
  • [23] Deep imitation reinforcement learning for self-driving by vision
    Zou, Qijie
    Xiong, Kang
    Fang, Qiang
    Jiang, Bohan
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2021, 6 (04) : 493 - 503
  • [24] Artificial intelligence and biological research
    Chung-I Wu
    Cai Li
    National Science Review, 2024, 11 (11) : 7 - 8
  • [25] Artificial intelligence and biological research
    Wu, Chung-, I
    Li, Cai
    NATIONAL SCIENCE REVIEW, 2024, 11 (11)
  • [26] RhizoNet segments plant roots to assess biomass and growth for enabling self-driving labs
    Sordo, Zineb
    Andeer, Peter
    Sethian, James
    Northen, Trent
    Ushizima, Daniela
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] The Research on Advertising Model of Self-Driving Car Platform
    Liu, Chun
    Wang, Zhong-qi
    2017 IEEE 3RD INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC), 2017, : 95 - 99
  • [28] A Review of Intelligent Self-Driving Vehicle Software Research
    Gwak, Jeonghwan
    Jung, Juho
    Oh, RyumDuck
    Park, Manbok
    Rakhimov, Mukhammad Abdu Kayumbek
    Ahn, Junho
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2019, 13 (11): : 5299 - 5320
  • [29] Deep understanding of big geospatial data for self-driving cars
    Shang, Shuo
    Shen, Jianbing
    Wen, Ji-Rong
    Kalnis, Panos
    Neurocomputing, 2021, 428 : 308 - 309
  • [30] In-Network Intelligence Control: Toward a Self-Driving Networking Architecture
    Mai, Tianle
    Garg, Sahil
    Yao, Haipeng
    Nie, Jiangtian
    Kaddoum, Georges
    Xiong, Zehui
    IEEE NETWORK, 2021, 35 (02): : 53 - 59