Reconstructing Rayleigh-Benard flows out of temperature-only measurements using Physics-Informed Neural Networks

被引:9
|
作者
Di Leoni, Patricio Clark [1 ]
Agasthya, Lokahith [2 ,3 ,4 ]
Buzzicotti, Michele [2 ,3 ]
Biferale, Luca [2 ,3 ]
机构
[1] Univ San Andres, Dept Ingn, Buenos Aires, Argentina
[2] Univ Roma Tor Vergata, Dept Phys, Rome, Italy
[3] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Rome, Italy
[4] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
来源
EUROPEAN PHYSICAL JOURNAL E | 2023年 / 46卷 / 03期
基金
欧洲研究理事会;
关键词
DEEP LEARNING FRAMEWORK; CONVECTION; ASSIMILATION;
D O I
10.1140/epje/s10189-023-00276-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the capabilities of Physics-Informed Neural Networks (PINNs) to reconstruct turbulent Rayleigh-Benard flows using only temperature information. We perform a quantitative analysis of the quality of the reconstructions at various amounts of low-passed-filtered information and turbulent intensities. We compare our results with those obtained via nudging, a classical equation-informed data assimilation technique. At low Rayleigh numbers, PINNs are able to reconstruct with high precision, comparable to the one achieved with nudging. At high Rayleigh numbers, PINNs outperform nudging and are able to achieve satisfactory reconstruction of the velocity fields only when data for temperature is provided with high spatial and temporal density. When data becomes sparse, the PINNs performance worsens, not only in a point-to-point error sense but also, and contrary to nudging, in a statistical sense, as can be seen in the probability density functions and energy spectra.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Synthesis of voiced sounds using physics-informed neural networks
    Yokota, Kazuya
    Ogura, Masataka
    Abe, Masajiro
    Acoustical Science and Technology, 45 (06): : 333 - 336
  • [32] Using physics-informed neural networks to compute quasinormal modes
    Cornell, Alan S.
    Ncube, Anele
    Harmsen, Gerhard
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [33] Optimal control of PDEs using physics-informed neural networks
    Mowlavi, Saviz
    Nabi, Saleh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [34] Structural parameter identification using physics-informed neural networks
    Guo, Xin-Yu
    Fang, Sheng-En
    MEASUREMENT, 2023, 220
  • [35] PINNeik: Eikonal solution using physics-informed neural networks
    bin Waheed, Umair
    Haghighat, Ehsan
    Alkhalifah, Tariq
    Song, Chao
    Hao, Qi
    COMPUTERS & GEOSCIENCES, 2021, 155
  • [36] Efficient physics-informed neural networks using hash encoding
    Huang, Xinquan
    Alkhalifah, Tariq
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501
  • [37] Solving the pulsar equation using physics-informed neural networks
    Stefanou, Petros
    Urban, Jorge F.
    Pons, Jose A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (01) : 1504 - 1511
  • [38] Synthesis of voiced sounds using physics-informed neural networks
    Yokota, Kazuya
    Ogura, Masataka
    Abe, Masajiro
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2024, 45 (06) : 333 - 336
  • [39] Simulating field soil temperature variations with physics-informed neural networks
    Xie, Xiaoting
    Yan, Hengnian
    Lu, Yili
    Zeng, Lingzao
    SOIL & TILLAGE RESEARCH, 2024, 244
  • [40] Physics-Informed Neural Networks for prediction of transformer's temperature distribution
    Odeback, Oliver Welin
    Bragone, Federica
    Laneryd, Tor
    Luvisotto, Michele
    Morozovska, Kateryna
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1579 - 1586