Yang-Fourier transforms of Lipschitz local fractional continuous functions

被引:3
|
作者
Bouhlal, A. [1 ]
Ahmad, O. [2 ]
机构
[1] Univ Chouaib Doukkali, Fac Sci Jurid Econ & Sociales, Lab Rech Gest Econ & Sci Sociales, El Jadida, Morocco
[2] Natl Inst Technol, Dept Math, Srinagar 190006, Jammu & Kashmir, India
关键词
Fractal space; Fourier transforms; Fractional; CALCULUS; GROWTH;
D O I
10.1007/s12215-023-00869-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we examine the order of magnitude of the Yang-Fourier transforms for local fractional continuous functions on R and satisfiying certain Lipschitz conditions. Furthermore, using the analogue of the operator Steklov, we construct the generalized modulus of smoothness in the fractal space L2,alpha(R) and we use the Yang-Fourier transforms to prove the equivalence between K-functionals and modulus of smoothness.
引用
收藏
页码:3891 / 3904
页数:14
相关论文
共 50 条
  • [21] Fourier transforms in generalized Lipschitz classes
    S. S. Volosivets
    B. I. Golubov
    Proceedings of the Steklov Institute of Mathematics, 2013, 280 : 120 - 131
  • [22] Fourier Transforms in Generalized Lipschitz Classes
    Volosivets, S. S.
    Golubov, B. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 280 (01) : 120 - 131
  • [23] Fourier Transforms of Dini-Lipschitz Functions on Rank 1 Symmetric Spaces
    Fahlaoui, S.
    Boujeddaine, M.
    El Kassimi, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4401 - 4411
  • [24] Similarity theorems for fractional Fourier transforms and fractional Hankel transforms
    Sheppard, CJR
    Larkin, KG
    OPTICS COMMUNICATIONS, 1998, 154 (04) : 173 - 178
  • [25] Titchmarsh theorems for Fourier transforms of Holder-Lipschitz functions on compact homogeneous manifolds
    Daher, Radouan
    Delgado, Julio
    Ruzhansky, Michael
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (01): : 23 - 49
  • [26] LIPSCHITZ CLASSES AND RESTRICTIONS OF FOURIER-TRANSFORMS
    MCGEHEE, OC
    MATHEMATISCHE ANNALEN, 1979, 239 (03) : 223 - 227
  • [27] Titchmarsh theorems for Fourier transforms of Hölder–Lipschitz functions on compact homogeneous manifolds
    Radouan Daher
    Julio Delgado
    Michael Ruzhansky
    Monatshefte für Mathematik, 2019, 189 : 23 - 49
  • [28] Generalized fractional Fourier transforms
    J Phys A Math Gen, 3 (973):
  • [29] Fractional discrete Fourier transforms
    Deng, ZT
    Caulfield, HJ
    Schamschula, M
    OPTICS LETTERS, 1996, 21 (18) : 1430 - 1432
  • [30] Generalized fractional Fourier transforms
    Liu, ST
    Jiang, JX
    Zhang, Y
    Zhang, JD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (03): : 973 - 981