On the Hofer-Zehnder conjecture on weighted projective spaces

被引:0
|
作者
Allais, Simon [1 ]
机构
[1] Univ Paris, IMJ PRG, 8 Pl Aurelie Nemours, F-75013 Paris, France
关键词
generating functions; Hamiltonian; periodic points; symplectic orbifold; weighted projective space; Hofer-Zehnder conjecture; barcodes; persistence modules; FIXED-POINT THEOREM; HAMILTONIAN EQUATIONS; SUBHARMONIC SOLUTIONS; PERIODIC-ORBITS; GEOMETRY;
D O I
10.1112/S0010437X22007825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an extension of the homology version of the Hofer-Zehnder conjecture proved by Shelukhin to the weighted projective spaces which are symplectic orbifolds. In particular, we prove that if the number of fixed points counted with their isotropy order as multiplicity of a non-degenerate Hamiltonian diffeomorphism of such a space is larger than the minimum number possible, then there are infinitely many periodic points.
引用
收藏
页码:87 / 108
页数:23
相关论文
共 50 条
  • [31] Geodesics on weighted projective spaces
    Guillemin, V.
    Uribe, A.
    Wang, Z.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 36 (02) : 205 - 220
  • [32] Geodesics on weighted projective spaces
    V. Guillemin
    A. Uribe
    Z. Wang
    Annals of Global Analysis and Geometry, 2009, 36 : 205 - 220
  • [33] The classification of weighted projective spaces
    Bahri, Anthony
    Franz, Matthias
    Notbohm, Dietrich
    Ray, Nigel
    FUNDAMENTA MATHEMATICAE, 2013, 220 (03) : 217 - 226
  • [34] Vojta's conjecture on weighted projective varieties
    Salami, Sajad
    Shaska, Tony
    EUROPEAN JOURNAL OF MATHEMATICS, 2025, 11 (01)
  • [35] WEIGHTED PROJECTIVE SPACES AND ITERATED THOM SPACES
    Bahri, Anthony
    Franz, Matthias
    Ray, Nigel
    OSAKA JOURNAL OF MATHEMATICS, 2014, 51 (01) : 89 - 119
  • [36] Cohomological study of weighted projective spaces
    AlAmrani, A
    ALGEBRAIC GEOMETRY-BK, 1997, 193 : 1 - 52
  • [37] Quantum Weighted Projective and Lens Spaces
    Francesco D’Andrea
    Giovanni Landi
    Communications in Mathematical Physics, 2015, 340 : 325 - 353
  • [38] Mutations of Fake Weighted Projective Spaces
    Coates, Tom
    Gonshaw, Samuel
    Kasprzyk, Alexander
    Nabijou, Navid
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [39] Weighted projective spaces and reflexive simplices
    Conrads, H
    MANUSCRIPTA MATHEMATICA, 2002, 107 (02) : 215 - 227
  • [40] Beilinson resolutions on weighted projective spaces
    Canonaco, A
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (01) : 35 - 40