A novel bio-based composite phase change material with excellent photo-thermal conversion capability for solar energy harvesting and energy storage

被引:7
|
作者
Zhu, Guangyu [1 ]
Chen, Wenjing [2 ]
Liu, Yi [3 ]
Hu, Xiaowu [1 ]
Ma, Yan [1 ]
Luo, Wenxing [1 ]
Luo, Lixiang [1 ]
Chen, Bin [1 ]
Jiang, Lan [1 ]
Zhang, Zezong [1 ]
Wang, Jue [1 ]
Huang, Yifan [1 ]
Tan, Sifan [1 ]
He, Yinshui [4 ]
Jiang, Xiongxin [1 ]
机构
[1] Nanchang Univ, Sch Adv Mfg, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[3] Jiujiang Vocat & Tech Coll, Jiujiang 330300, Peoples R China
[4] Nanchang Univ, Sch Resources & Environm, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change materials; Corn stem; Polypyrrole; Multi -walled carbon nanotube; Photo -thermal conversion; Seawater desalination; ENHANCED THERMAL-CONDUCTIVITY; PERFORMANCE; POLYPYRROLE;
D O I
10.1016/j.est.2023.110067
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Organic solid-liquid phase change materials (PCMs) have been widely studied in the field of photo-thermal conversion and thermal energy storage. However, problems such as easy leakage and low efficiency of photo -thermal conversion limit their applications. To solve these problems, this study developed a shape-stable com-posite phase change material (CPCM) using sponge tissue of discarded corn stem (STCS), polyethylene glycol (PEG), pyrrole (Py), and multi-walled carbon nanotube (MWCNT). PPy and MWCNT enable the CPCM to have excellent photo-thermal conversion capability and thermal conductivity. With 0.2 % MWCNT content, the CPCM achieved a thermal conductivity of 0.4609 W/m & sdot;K and a photo-thermal conversion efficiency exceeding 95.3 %. It also demonstrated high enthalpy and relative enthalpy efficiency (152.2 J/g, 96.01 %). Moreover, the CPCM exhibited remarkable shape and thermal stability, with no pyrolysis below 340 degrees C and nearly unchanged enthalpy after 100 cycles. Meanwhile, this CPCM also showed excellent ability in promoting seawater desali-nation. This work provides a new idea for recycling of agricultural waste and storage of solar energy as well as desalination of seawater.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity
    Sheng, Xinxin
    Dong, Dexuan
    Lu, Xiang
    Zhang, Li
    Chen, Ying
    Composites Part A: Applied Science and Manufacturing, 2020, 138
  • [22] MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity
    Sheng, Xinxin
    Dong, Dexuan
    Lu, Xiang
    Zhang, Li
    Chen, Ying
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 138
  • [23] Bio-based phase change materials for thermal energy storage and release: A review
    Rashid, Farhan Lafta
    Al-Obaidi, Mudhar A.
    Dhaidan, Nabeel S.
    Hussein, Ahmed Kadhim
    Ali, Bagh
    Hamida, Mohamed Bechir Ben
    Younis, Obai
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [24] Investigation of a novel bio-based phase change material hemp concrete for passive energy storage in buildings
    Sawadogo, Mohamed
    Benmahiddine, Ferhat
    Hamami, Ameur El Amine
    Belarbi, Rafik
    Godin, Alexandre
    Duquesne, Marie
    APPLIED THERMAL ENGINEERING, 2022, 212
  • [25] MXene-decorated bio-based porous carbon composite phase change material for superior solar-thermal energy storage and thermal management of electronic components
    Chen, Wenjing
    Xiao, Shikun
    Liu, Yi
    Hu, Xiaowu
    Xie, Yuqiong
    Liu, Yichi
    Ma, Yan
    Luo, Lixiang
    Jiang, Xiongxin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 1857 - 1873
  • [26] A novel form stable PCM based bio composite material for solar thermal energy storage applications
    Das, Dudul
    Bordoloi, Urbashi
    Muigai, Harrison Hihu
    Kalita, Pankaj
    JOURNAL OF ENERGY STORAGE, 2020, 30
  • [27] vegetable fat: A low-cost bio-based phase change material for thermal energy storage in buildings
    Boussaba, Lisa
    Makhlouf, Said
    Foufa, Amina
    Lefebvre, Gilles
    Royon, Laurent
    JOURNAL OF BUILDING ENGINEERING, 2019, 21 : 222 - 229
  • [28] A novel form-stable phase-change material with high enthalpy and long endurance for photo-thermal energy storage
    Yang, Yunyun
    Liu, Changhui
    Shi, Yanlong
    Hu, Jintao
    Chang, Huikun
    He, Yuanhua
    BULLETIN OF MATERIALS SCIENCE, 2023, 46 (03)
  • [29] A novel form-stable phase-change material with high enthalpy and long endurance for photo-thermal energy storage
    Yunyun Yang
    Changhui Liu
    Yanlong Shi
    Jintao Hu
    Huikun Chang
    Yuanhua He
    Bulletin of Materials Science, 46
  • [30] Waste sugarcane skin-based composite phase change material for thermal energy storage and solar energy utilization
    Chen, Yan
    He, Hui
    Li, Jia-hao
    He, Heng
    Chen, Sheng
    Deng, Cong
    MATERIALS LETTERS, 2023, 342