A Simplified Kinetic Modeling of CO2 Absorption into Water and Monoethanolamine Solution in Hollow-Fiber Membrane Contactors

被引:1
|
作者
Tran, Mai Lien [1 ]
Nguyen, Chi Hieu [1 ]
Chu, Kuan-Yan [2 ]
Juang, Ruey-Shin [2 ,3 ,4 ]
机构
[1] Ind Univ Ho Chi Minh City, Inst Environm Sci Engn & Management, Ho Chi Minh City 700000, Vietnam
[2] Chang Gung Univ, Dept Chem & Mat Engn, Taoyuan 33302, Taiwan
[3] Chang Gung Mem Hosp Linkou, Dept Internal Med, Div Nephrol, Taoyuan 33305, Taiwan
[4] Ming Chi Univ Technol, Dept Safety Hlth & Environm Engn, New Taipei City 24301, Taiwan
关键词
kinetic modeling; CO2; absorption; monoethanolamine; hollow-fiber membrane contactors; CARBON-DIOXIDE; AQUEOUS-SOLUTIONS; AMINE SOLUTIONS; ALKANOLAMINES; REMOVAL; VISCOSITIES; DENSITIES; SOLVENTS; CAPTURE; MDEA;
D O I
10.3390/membranes13050494
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The absorption of CO2 from CO2-N-2 gas mixtures using water and monoethanolamine (MEA) solution in polypropylene (PP) hollow-fiber membrane contactors was experimentally and theoretically examined. Gas was flowed through the lumen of the module, whereas the absorbent liquid was passed counter-currently across the shell. Experiments were carried out under various gas- and liquid-phase velocities as well as MEA concentrations. The effect of pressure difference between the gas and liquid phases on the flux of CO2 absorption in the range of 15-85 kPa was also investigated. A simplified mass balance model that considers non-wetting mode as well as adopts the overall mass-transfer coefficient evaluated from absorption experiments was proposed to follow the present physical and chemical absorption processes. This simplified model allowed us to predict the effective length of the fiber for CO2 absorption, which is crucial in selecting and designing membrane contactors for this purpose. Finally, the significance of membrane wetting could be highlighted by this model while using high concentrations of MEA in the chemical absorption process.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] CO2 TRANSFER IN A NOVEL HOLLOW-FIBER MEMBRANE ECMO LUNG
    HULTQUIST, K
    HULTQUIST, J
    CZAFLA, N
    MANGINO, M
    SUSSMANE, J
    WOLFSDORF, J
    FASEB JOURNAL, 1995, 9 (03): : A16 - A16
  • [42] A comparative study on the structure of developed porous PVDF and PEI hollow fiber membrane contactors for CO2 absorption
    Mansourizadeh, A.
    Jazebizadeh, M. H.
    Vaseghi, M. R.
    Aghili, A.
    JOURNAL OF POLYMER RESEARCH, 2015, 23 (01) : 1 - 10
  • [43] A comparative study on the structure of developed porous PVDF and PEI hollow fiber membrane contactors for CO2 absorption
    A. Mansourizadeh
    M. H. Jazebizadeh
    M. R. Vaseghi
    A. Aghili
    Journal of Polymer Research, 2016, 23
  • [44] CO2 Stripping from Monoethanolamine through a Polypropylene/CH3SiO2 Composite Hollow-Fiber Membrane Contactor
    Amirabedi, Parya
    Akbari, Ali
    Yegani, Reza
    Raveshiyan, Saba
    CHEMICAL ENGINEERING & TECHNOLOGY, 2022, 45 (08) : 1512 - 1521
  • [45] Analysis on a hydrophobic hollow-fiber membrane absorber and experimental observations of CO2 removal by enhanced absorption
    Chun, MS
    Lee, KH
    SEPARATION SCIENCE AND TECHNOLOGY, 1997, 32 (15) : 2445 - 2466
  • [46] Structurally developed microporous polyvinylidene fluoride hollow-fiber membranes for CO2 absorption with diethanolamine solution
    Mansourizadeh, A.
    Mousavian, S.
    JOURNAL OF POLYMER RESEARCH, 2013, 20 (03)
  • [47] Theoretical modeling of the mass transfer performance of CO2 absorption into DEAB solution in hollow fiber membrane contactor
    Cao, Fan
    Gao, Hongxia
    Ling, Hao
    Huang, Yangqiang
    Liang, Zhiwu
    JOURNAL OF MEMBRANE SCIENCE, 2020, 593
  • [48] Modelling of CO2 absorption via hollow fiber membrane contactors: Comparison of pore gas diffusivity models
    Afza, K. Nasim
    Hashemifard, S. A.
    Abbasi, M.
    CHEMICAL ENGINEERING SCIENCE, 2018, 190 : 110 - 121
  • [49] Structurally developed microporous polyvinylidene fluoride hollow-fiber membranes for CO2 absorption with diethanolamine solution
    A. Mansourizadeh
    S. Mousavian
    Journal of Polymer Research, 2013, 20
  • [50] CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor
    Rezakazemi, Mashallah
    Darabi, Mohammad
    Soroush, Ebrahim
    Mesbah, Mohammad
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 210 : 920 - 926