The SHRIMP zircon U-Pb geochronology and microstructural study of the albite-spodumene pegmatite from the Boam Li deposit in Uljin, South Korea

被引:1
|
作者
Park, Gyuseung [1 ]
Park, Jung-Woo [1 ,2 ,4 ]
Heo, Chul-Ho [3 ]
机构
[1] Seoul Natl Univ, Sch Earth & Environm Sci, 1 Gwanak-ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Oceanog, Seoul 08826, South Korea
[3] Korea Inst Geosci & Mineral Resources, Crit Minerals Res Ctr, Mineral Resources Div, Daejeon 34132, South Korea
[4] Seoul Natl Univ, Sch Earth & Environm Sci, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
albite-spodumene pegmatite; greisen; zircon U-Pb geochronology; Boam deposit; Uljin; YEONGNAM MASSIF; MINERALIZATION; GEOCHEMISTRY; INTRUSIONS; EVOLUTION; GREISEN; ISOTOPE; ROCKS; AGES;
D O I
10.1007/s12303-023-0006-9
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Boam Li deposit in Uljin, South Korea, is a hard-rock Li deposit composed of albite-spodumene pegmatite and lepidolite-elbaite greisen. The timing of Li mineralization in the Boam deposit is poorly constrained due to a wide range of the mica K-Ar ages of the greisen from 176 to 127 Ma. We investigated the microstructure, mineral composition, and U-Pb age of zircons separated from the albite-spodumene pegmatite of the Boam Li deposit. Zircons are found as inclusions in spodumene and discrete grains intergrown with secondary albite, muscovite, columbite group mineral (CGM), microlite, and apatite, indicating that the zircon was saturated during the intrusion of pegmatite melt and subsequent greisenization of the Boam deposit. Most zircons have altered porous domains in cores mantled by overgrown rims with contrasting microstructures and chemical compositions. The porous domains in zircon cores contain Ca, Al, and Fe-bearing zircon solid solution, quartz, K-feldspar, muscovite, CGM, and microlite, which indicates pervasive alteration during greisenization. Higher U contents and Zr/Hf ratios of the core than the rim suggest that the melt from which the zircon cores crystallized was U-rich and less evolved. The overgrown rim domain with weak oscillatory zoning occurs in association with albite, muscovite, and apatite. Based on the microstructure and zircon compositions, we suggest that the SHRIMP U-Pb age of the zircons from the pegmatite indicates the timing of greisenization and Li mineralization in the Boam deposit. The zircon core and rim U-Pb isotope data constitute a single discordia line, yielding a weighted mean age of 172.4 +/- 1.1 Ma (MSWD = 2.3). The age is consistent with the oldest mica K-Ar age of the lepidolite-elbaite greisen in Uljin.
引用
收藏
页码:479 / 489
页数:11
相关论文
共 50 条
  • [31] U-PB zircon tuff geochronology from the Karoo Basin, South Africa: implications of zircon recycling on stratigraphic age controls
    McKay, Matthew P.
    Weislogel, Amy L.
    Fildani, Andrea
    Brunt, Rufus L.
    Hodgson, David M.
    Flint, Stephen S.
    INTERNATIONAL GEOLOGY REVIEW, 2015, 57 (04) : 393 - 410
  • [32] Constraints on the Tectonic Setting of the Andaman Ophiolites, Bay of Bengal, India, from SHRIMP U-Pb Zircon Geochronology of Plagiogranite
    Sarma, D. Srinivasa
    Jafri, S. H.
    Fletcher, Ian R.
    McNaughton, Neal J.
    JOURNAL OF GEOLOGY, 2010, 118 (06): : 691 - 697
  • [33] A revised Palaeoproterozoic chronostratigraphy for the Pine Creek Orogen, northern Australia: Evidence from SHRIMP U-Pb zircon geochronology
    Worden, Kurt
    Carson, Chris
    Scrimgeour, Ian
    Lally, James
    Doyle, Nigel
    PRECAMBRIAN RESEARCH, 2008, 166 (1-4) : 122 - 144
  • [34] U-Pb zircon geochronology from the Alexander terrane, southeast Alaska: implications for the Greens Creek massive sulphide deposit
    Sack, Patrick J.
    Berry, Ron F.
    Gemmell, J. Bruce
    Meffre, Sebastien
    West, Andrew
    CANADIAN JOURNAL OF EARTH SCIENCES, 2016, 53 (12) : 1458 - 1475
  • [35] Zircon U-Pb geochronology and geochemistry of granites and pegmatites, and metallogenesis of related uranium from the Chenjiazhuang deposit, Shaanxi Province
    Zhang S.
    Liu J.
    Yuan F.
    Liu G.
    Wang G.
    Zhang H.
    Zhang H.
    Earth Science Frontiers, 2019, 26 (05): : 270 - 289
  • [36] “High-uranium Effect” on Zircon U-Pb Dating of Ore-related Granites in the Uranium Ore District: Evidence from Zircon SHRIMP U-Pb Geochronology of the Luxi and Xiazhuang Granites
    Wu J.
    Wu J.
    Liu X.
    Wang K.
    Liu S.
    Geotectonica et Metallogenia, 2023, 47 (02) : 449 - 460
  • [37] Judgment of metallogenic potential of Kangxiwa pegmatite in Xinjiang: Evidence from zircon U-Pb geochronology, geochemistry and Lu-Hf isotope
    Chen Mou
    Wang He
    Zhang XiaoYu
    Yan QingHe
    Gao Hao
    ACTA PETROLOGICA SINICA, 2022, 38 (07) : 2095 - 2112
  • [38] Paleozoic tectonics of the southwestern Gyeonggi massif, South Korea: Insights from geochemistry, chromian-spinel chemistry and SHRIMP U-Pb geochronology
    Park, Seung-Ik
    Kim, Sung Won
    Kwon, Sanghoon
    Ngo Xuan Thanh
    Yi, Keewook
    Santosh, M.
    GONDWANA RESEARCH, 2014, 26 (02) : 684 - 698
  • [39] SHRIMP U-Pb zircon ages of pyroclastic rocks in the Bansong Group, Taebaeksan Basin, South Korea and their implication for the Mesozoic tectonics
    Han, Raehee
    Ree, Jin-Han
    Cho, Deung-Lyong
    Kwon, Sung-Tack
    Amstrong, Richard
    GONDWANA RESEARCH, 2006, 9 (1-2) : 106 - 117
  • [40] Micron- to nanoscale characterisation and U-Pb geochronology of zircon from granites of the Samphire Pluton, South Australia
    Domnick, Urs
    Cook, Nigel J.
    Ciobanu, Cristiana L.
    Courtney-Davies, Liam
    Dmitrijeva, Marija
    Verdugo-Ihl, Max R.
    Xu, Jing
    Keyser, William
    Slattery, Ashley
    Kennedy, Allen K.
    Bluck, Russel
    PRECAMBRIAN RESEARCH, 2020, 350