Domain generalization in nematode classification

被引:0
|
作者
Zhu, Yi [1 ,2 ]
Zhuang, Jiayan [2 ]
Ye, Sichao [2 ]
Xu, Ningyuan [2 ]
Xiao, Jiangjian [2 ]
Gu, Jianfeng [3 ]
Fang, Yiwu [3 ]
Peng, Chengbin [1 ,4 ]
Zhu, Ying [1 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Ind Technol, Ningbo, Peoples R China
[3] Ningbo Entry Exit Inspect & Quarantine Bur, Ctr Tech, Ningbo, Peoples R China
[4] Ningbo Univ, Ningbo, Peoples R China
关键词
Deep learning; Domain generalization; Metric learning; Nematode classification; BURSAPHELENCHUS-XYLOPHILUS NEMATODA; IDENTIFICATION; DNA;
D O I
10.1016/j.compag.2023.107710
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Nematode images captured by different microscopes may appear differently in terms of image color and image quality, resulting in these images laying in different learning domains. This can negatively impact nematode classification via deep learning. In this paper, we propose a local structure invariance guided (LSIG) domain generalization approach to enhance the model generalization of nematode local regions in unseen domains. First, a style transfer method is introduced to synthesize new domain image samples from the source domain. Unlike in the original input images, the color information of the synthetic images is changed, but their structural information is retained. Then, a metric learning strategy is designed to determine the cross-domain invariant structural representation between the source and new domains by pairwise learning. Each class is then effectively clustered, and a better decision boundary is determined to improve the model generalization. Overall, we demonstrate the effectiveness and robustness of the method on binary-class and multi-class classification tasks on diverse nematode datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Generalization for calendar attributes using domain generalization graphs
    Randall, DJ
    Hamilton, HJ
    Hilderman, RJ
    FIFTH INTERNATIONAL WORKSHOP ON TEMPORAL REPRESENTATION AND REASONING - PROCEEDINGS: TIME-98, 1998, : 177 - 184
  • [42] Classification of 12-lead ECG Signals With Adversarial Multi-Source Domain Generalization
    Hasani, Hosein
    Bitarafan, Adeleh
    Soleymani, Mahdieh
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [43] Two-Stage Pedestrian Detection Model Using a New Classification Head for Domain Generalization
    Schulz, Daniel
    Perez, Claudio A.
    SENSORS, 2023, 23 (23)
  • [44] Language-Aware Domain Generalization Network for Cross-Scene Hyperspectral Image Classification
    Zhang, Yuxiang
    Zhang, Mengmeng
    Li, Wei
    Wang, Shuai
    Tao, Ran
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [45] Learned Gaussian ProtoNet for improved cross-domain few-shot classification and generalization
    Nadeem Yousuf Khanday
    Shabir Ahmad Sofi
    Neural Computing and Applications, 2023, 35 : 3435 - 3448
  • [46] Invariant semantic domain generalization shuffle network for cross-scene hyperspectral image classification
    Gao, Jingpeng
    Ji, Xiangyu
    Ye, Fang
    Chen, Geng
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 273
  • [47] Learned Gaussian ProtoNet for improved cross-domain few-shot classification and generalization
    Khanday, Nadeem Yousuf
    Sofi, Shabir Ahmad
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (04): : 3435 - 3448
  • [48] Regularized joint self-training: A cross-domain generalization method for image classification
    Chen, Changlin
    Yang, Yukun
    Liu, Minghao
    Rong, Zhaomin
    Shu, Shuangbao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [49] Deep Spatial Domain Generalization
    Yu, Dazhou
    Bai, Guangji
    Li, Yun
    Zhao, Liang
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 1293 - 1298
  • [50] Towards Unsupervised Domain Generalization
    Zhang, Xingxuan
    Zhou, Linjun
    Xu, Renzhe
    Cui, Peng
    Shen, Zheyan
    Liu, Haoxin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4900 - 4910