A Poisson-Nernst-Planck single ion channel model and its effective finite element solver

被引:1
|
作者
Xie, Dexuan [1 ]
Chao, Zhen [2 ]
机构
[1] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Poisson -Nernst -Planck equations; Finite element method; Single ion channel; Potassium channel; Electric current calculation; MOLECULAR-DYNAMICS; K+ CHANNEL; SELECTIVITY FILTER; POTASSIUM CHANNEL; CONDUCTION; PERMEATION; MEMBRANE;
D O I
10.1016/j.jcp.2023.112043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A single ion channel is a membrane protein with an ion selectivity filter that allows only a single species of ions (such as potassium ions) to pass through in the "open" state. Its se-lectivity filter also naturally separates a solvent domain into an intracellular domain and an extracellular domain. Such biological and geometrical characteristics of a single ion chan-nel are novelly adopted in the construction of a new kind of dielectric continuum ion channel model, called the Poisson-Nernst-Planck single ion channel (PNPSIC) model, in this paper. An effective PNPSIC finite element solver is then developed and implemented as a software package workable for a single ion channel with a three-dimensional X-ray crys-tallographic molecular structure and a mixture of multiple ionic species. Numerical results for a potassium channel confirm the convergence and efficiency of the PNPSIC finite ele-ment solver and demonstrate the high performance of the software package. Moreover, the PNPSIC model is applied to the calculation of electric current and validated by biophysical experimental data. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Superconvergent gradient recovery for nonlinear Poisson-Nernst-Planck equations with applications to the ion channel problem
    Ying Yang
    Ming Tang
    Chun Liu
    Benzhuo Lu
    Liuqiang Zhong
    Advances in Computational Mathematics, 2020, 46
  • [32] Superconvergent gradient recovery for nonlinear Poisson-Nernst-Planck equations with applications to the ion channel problem
    Yang, Ying
    Tang, Ming
    Liu, Chun
    Lu, Benzhuo
    Zhong, Liuqiang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (06)
  • [33] An energy preserving finite difference scheme for the Poisson-Nernst-Planck system
    He, Dongdong
    Pan, Kejia
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 287 : 214 - 223
  • [34] Ion flux through membrane channels - An enhanced algorithm for the Poisson-Nernst-Planck model
    Dyrka, Witold
    Augousti, Andy T.
    Kotulska, Malgorzata
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (12) : 1876 - 1888
  • [35] Do Bistable Steric Poisson-Nernst-Planck Models Describe Single-Channel Gating?
    Gavish, Nir
    Liu, Chun
    Eisenberg, Bob
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (20): : 5183 - 5192
  • [36] Modified Poisson-Nernst-Planck theory for ion transport in polymeric electrolytes
    van Soestbergen, M.
    Biesheuvel, P. M.
    Rongen, R. T. H.
    Ernst, L. J.
    Zhang, G. Q.
    JOURNAL OF ELECTROSTATICS, 2008, 66 (11-12) : 567 - 573
  • [37] Effects of ion sizes on Poisson-Nernst-Planck systems with multiple ions
    Lin, Guojian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (11) : 11842 - 11868
  • [38] A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels
    Chen, Duan
    BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (08) : 1703 - 1726
  • [39] Unconditional superconvergence analysis of a structure-preserving finite element method for the Poisson-Nernst-Planck equations
    Yang, Huaijun
    Li, Meng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)
  • [40] Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel
    Chen, D
    Lear, J
    Eisenberg, B
    BIOPHYSICAL JOURNAL, 1997, 72 (01) : 97 - 116