Design of a compact infrared panoramic optical system for unmanned aerial vehicles

被引:1
|
作者
Yang, Yingzhe [1 ]
Wang, Jia [1 ]
Li, Yuejia [1 ]
Ba, Jian [1 ]
机构
[1] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
来源
关键词
lens design; UAV detection; panoramic annular lens; infrared system;
D O I
10.1117/12.2642220
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Infrared imaging system is widely used in unmanned aerial vehicle (UAV) detection because of the advantage of precise monitoring and anti-interference. However, it is difficult to simultaneously achieve large field of view (FOV) and light weight. In this paper, we propose a compact infrared panoramic annular lens (PAL) system with a large FOV and a three-piece simple structure, which contains three standard spherical lenses and has a FOV of (30 degrees similar to 100 degrees) x360 degrees, total length of 51.6mm, maximum diameter of 72 mm, focal length of 2.2mm, and F number of 3. The modulation transfer function of the system is higher than 0.7 at the Nyquist frequency, and F-theta distortion is controlled to less than 2%, which can meet the requirements of UAV detection. In addition, we use optical compensation method to achieve athermalized design in the range of -40 degrees C similar to+80 degrees C. The system possesses low sensitivity in tolerance, therefore we design a straight-tube mechanical structure for the system to simplify the assembly process and ensure the assembly precision at the same time. The PAL system we proposed is easy to be carried by UAVs due to its features of large FOV and lightweight, which can achieve accurate detection, large-scale monitoring, target recognition and tracking in harsh environments. It has important application value in military, security monitoring, machine vision and other fields.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Design and manufacture of propellers for small unmanned aerial vehicles
    Rutkay, Brian
    Laliberte, Jeremy
    JOURNAL OF UNMANNED VEHICLE SYSTEMS, 2016, 4 (04): : 228 - 245
  • [42] PRACTICAL ASPECTS OF DESIGN AND TESTING UNMANNED AERIAL VEHICLES
    Szywalski, Patryk
    Waindok, Andrzej
    ACTA MECHANICA ET AUTOMATICA, 2020, 14 (01) : 50 - 58
  • [43] A Design Scheme of Data Security for Unmanned Aerial Vehicles
    Yang, Dongyu
    Zhao, Yue
    Yi, Zhongqiang
    Yang, Dandan
    He, Shanxiang
    ADVANCED HYBRID INFORMATION PROCESSING, ADHIP 2022, PT I, 2023, 468 : 165 - 178
  • [44] CONTROL DESIGN FOR UNMANNED AERIAL VEHICLES WITH FOUR ROTORS
    Kotarski, Denis
    Benic, Zoran
    Krznar, Matija
    INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS, 2016, 14 (02) : 236 - 245
  • [45] DESIGN OF PRECISION AERODYNAMIC BALANCE FOR UNMANNED AERIAL VEHICLES
    Velazquez, Luis
    Nozicka, Jiri
    EXPERIMENTAL FLUID MECHANICS 2009, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE, 2009, : 389 - 398
  • [46] Design and Dynamics of Kinetic Launcher for Unmanned Aerial Vehicles
    Kondratiuk, Miroslaw
    Ambroziak, Leszek
    APPLIED SCIENCES-BASEL, 2020, 10 (08):
  • [47] Design of Unmanned Aerial Vehicles for various wireless applications
    Aktharun, S. Bhanu
    Sekhar, M. S. R.
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 1115 - 1119
  • [48] Research on Obstacle Avoidance Technology for Unmanned Aerial Vehicles Based on Panoramic Visual Perception
    Jiang, Xiao-Yan
    Han, Mei
    Zhang, Jun-Kai
    Wu, Xiao-Fei
    Zhang, Xiao-Yang
    Journal of Computers (Taiwan), 2024, 35 (03) : 345 - 361
  • [49] Cooperative communication framework design for the unmanned aerial vehicles-unmanned surface vehicles formation
    Ma, Yong
    Zhao, Yujiao
    Qi, Xin
    Zheng, Yuanzhou
    Gan, Runze
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (05):
  • [50] Aerial Robotics and Unmanned Aerial Vehicles
    Ollero, Anibal
    Valavanis, Kimon
    Chen, Yangquan
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2018, 25 (04) : 96 - 97