On s-Stirling transform and poly-Cauchy numbers of the second kind with level 2

被引:4
|
作者
Komatsu, Takao [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Dept Math Sci, Hangzhou 310018, Peoples R China
关键词
Stirling numbers; Stirling transform; Poly-Cauchy numbers of the second kind;
D O I
10.1007/s00010-022-00931-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the transform by Stirling numbers with higher level, and give several concrete results. When s=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=2$$\end{document}, we consider the transform of rational sequences. In particular, poly-Cauchy numbers of the second kind with level 2 are introduced in order to achieve some extended results. We also give several properties of poly-Cauchy numbers of the second kind with level 2, which are related to those of poly-Bernoulli numbers with level 2 and analogous to those of poly-Cauchy numbers of the first kind with level 2.
引用
收藏
页码:31 / 61
页数:31
相关论文
共 50 条
  • [41] A Formula for the Stirling Numbers of the Second Kind
    Xi, Gao-Wen
    Luo, Qiu-Ming
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (08): : 762 - 762
  • [42] An Equation of Stirling Numbers of the Second Kind
    DU Chun-yu
    数学季刊, 2006, (02) : 261 - 263
  • [43] Stirling numbers of the second kind and Bell numbers for graphs
    Kereskenyi-Balogh, Zsofia
    Nyul, Gabor
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 58 : 264 - 274
  • [44] THE 2-ADIC VALUATIONS OF STIRLING NUMBERS OF THE SECOND KIND
    Hong, Shaofang
    Zhao, Jianrong
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (04) : 1057 - 1066
  • [45] Asymptotics of Stirling and Chebyshev-Stirling Numbers of the Second Kind
    Gawronski, Wolfgang
    Littlejohn, Lance L.
    Neuschel, Thorsten
    STUDIES IN APPLIED MATHEMATICS, 2014, 133 (01) : 1 - 17
  • [46] On equal values of Stirling numbers of the second kind
    Ferenczik, J.
    Pinter, A.
    Porvazsnyik, B.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 980 - 984
  • [47] Probabilistic Stirling Numbers of the Second Kind and Applications
    José A. Adell
    Journal of Theoretical Probability, 2022, 35 : 636 - 652
  • [48] Simple Formulas for Stirling Numbers of the Second Kind
    Low, A. A.
    Ho, C. K.
    INNOVATION AND ANALYTICS CONFERENCE AND EXHIBITION (IACE 2015), 2015, 1691
  • [49] Stirling numbers with level 2 and poly-Bernoulli numbers with level 2
    Komatsu, Takao
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2022, 100 (1-2): : 241 - 261
  • [50] Probabilistic Stirling Numbers of the Second Kind and Applications
    Adell, Jose A.
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (01) : 636 - 652