On s-Stirling transform and poly-Cauchy numbers of the second kind with level 2

被引:4
|
作者
Komatsu, Takao [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Dept Math Sci, Hangzhou 310018, Peoples R China
关键词
Stirling numbers; Stirling transform; Poly-Cauchy numbers of the second kind;
D O I
10.1007/s00010-022-00931-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the transform by Stirling numbers with higher level, and give several concrete results. When s=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=2$$\end{document}, we consider the transform of rational sequences. In particular, poly-Cauchy numbers of the second kind with level 2 are introduced in order to achieve some extended results. We also give several properties of poly-Cauchy numbers of the second kind with level 2, which are related to those of poly-Bernoulli numbers with level 2 and analogous to those of poly-Cauchy numbers of the first kind with level 2.
引用
收藏
页码:31 / 61
页数:31
相关论文
共 50 条
  • [1] On s-Stirling transform and poly-Cauchy numbers of the second kind with level 2
    Takao Komatsu
    Aequationes mathematicae, 2023, 97 : 31 - 61
  • [2] A Note on the Degenerate Poly-Cauchy Polynomials and Numbers of the Second Kind
    Kim, Hye Kyung
    Jang, Lee-Chae
    SYMMETRY-BASEL, 2020, 12 (07):
  • [3] Recurrence Relations of Poly-Cauchy Numbers by the r-Stirling Transform
    Takao Komatsu
    Mediterranean Journal of Mathematics, 2022, 19
  • [4] Poly-Cauchy numbers with level 2
    Komatsu, Takao
    Pita-Ruiz, Claudio
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (07) : 570 - 585
  • [5] Recurrence Relations of Poly-Cauchy Numbers by the r-Stirling Transform
    Komatsu, Takao
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [6] Generalized Stirling numbers with poly-Bernoulli and poly-Cauchy numbers
    Komatsu, Takao
    Young, Paul Thomas
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (05) : 1211 - 1222
  • [7] Poly-Cauchy numbers and polynomials of the second kind with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [8] Poly-Cauchy numbers and polynomials of the second kind with umbral calculus viewpoint
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2014
  • [9] Poly-Cauchy Numbers with Higher Level
    Komatsu, Takao
    Sirvent, Victor F.
    SYMMETRY-BASEL, 2023, 15 (02):
  • [10] Convolution identities of poly-Cauchy numbers with level 2
    Komatsu, Takao
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2022, 148 : 245 - 262