STRICHARTZ ESTIMATES FOR THE WAVE EQUATION INSIDE CYLINDRICAL CONVEX DOMAINS

被引:1
|
作者
Meas, Len [1 ]
机构
[1] Royal Univ Phnom Penh, Dept Math, Phnom Penh, Cambodia
关键词
dispersive estimates; Strichartz estimates; wave equation; cylindrical convex domain;
D O I
10.1017/S0004972722000727
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish local-in-time Strichartz estimates for solutions of the model case Dirichlet wave equation inside cylindrical convex domains Omega subset of R-3 with smooth boundary partial derivative Omega not equal empty set. The key ingredients to prove Strichartz estimates are dispersive estimates, energy estimates, interpolation and TT* arguments. Strichartz estimates for waves inside an arbitrary domain Omega have been proved by Blair, Smith and Sogge ['Strichartz estimates for the wave equation on manifolds with boundary', Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), 1817-1829]. We provide a detailed proof of the usual Strichartz estimates from dispersive estimates inside cylindrical convex domains for a certain range of the wave admissibility.
引用
收藏
页码:304 / 312
页数:9
相关论文
共 50 条