A machine learning approach to distinguishing between non-functioning and autonomous cortisol secreting adrenal incidentaloma on magnetic resonance imaging using texture analysis

被引:3
|
作者
Piskin, Ferhat Can [1 ]
Akkus, Gamze [2 ]
Yucel, Sevinc Puren [3 ]
Unal, Ilker [3 ]
Balli, Huseyin Tugsan [1 ]
Olgun, Mehtap Evran [2 ]
Sert, Murat [2 ]
Tetiker, Bekir Tamer [2 ]
Aikimbaev, Kairgeldy [1 ]
机构
[1] Cukurova Univ, Balcali Hosp, Med Sch, Dept Radiol, Adana, Turkey
[2] Cukurova Univ, Balcali Hosp, Med Sch, Dept Endocrinol, Adana, Turkey
[3] Cukurova Univ, Balcali Hosp, Med Sch, Dept Biostat, Adana, Turkey
关键词
Adrenal incidentalomas; Hormone secretion; Machine learning-magnetic resonance imaging; RADIOMICS; ADENOMAS;
D O I
10.1007/s11845-022-03105-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose To investigate the possibility of distinguishing between nonfunctioning adrenal incidentalomas (NFAI) and autonomous cortisol secreting adrenal incidentalomas (ACSAI) with a model created with magnetic resonance imaging (MRI)-based radiomics and clinical features. Methods In this study, 100 adrenal lesions were evaluated. The lesions were segmented on unenhanced T1-weighted in-phase (IP) and opposed-phase (OP) as well as on T2-weighted (T2-W) 3Tesla MRIs. The LASSO regression model was used to select potential predictors from 108 texture features for each sequence. Subsequently, a combined radiomics score and clinical features were created and compared. Results A significant difference was found between median rad-scores for ACSAI and NFAI in training and test sets (p < 0.05 for all sequences). Multivariate logistic regression analysis revealed that the length of the tumor (OR = 1.09, p = 0.007) was an independent risk factor related to ACSAI. Multivariate logistic regression analysis was used for building clinical-radiomics (combined) models. The Op, IP, and IP plus T2-W model had a higher performance with area under curve (AUC) 0.758, 0.746, and 0.721 on the test dataset, respectively. Conclusion ACSAI can be distinguished from NFAI with high accuracy on unenhanced MRI. Radiomics analysis and the model constructed by machine learning algorithms seem superior to another radiologic assessment method. The inclusion of chemical shift MRI and the length of the tumor in the radiomics model could increase the power of the test.
引用
收藏
页码:1155 / 1161
页数:7
相关论文
共 50 条
  • [41] Prediction of the histologic upgrade of ductal carcinoma in situ using a combined radiomics and machine learning approach based on breast dynamic contrast-enhanced magnetic resonance imaging
    Lee, Hyo-jae
    Park, Jae Hyeok
    Nguyen, Anh-Tien
    Do, Luu-Ngoc
    Park, Min Ho
    Lee, Ji Shin
    Park, Ilwoo
    Lim, Hyo Soon
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [42] Differentiating between cardiac amyloidosis and hypertrophic cardiomyopathy on non-contrast cine-magnetic resonance images using machine learning-based radiomics
    Jiang, Shu
    Zhang, Lianlian
    Wang, Jia
    Li, Xia
    Hu, Su
    Fu, Yigang
    Wang, Xin
    Hao, Shaowei
    Hu, Chunhong
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [43] Texture Analysis of Fat-Suppressed T2-Weighted Magnetic Resonance Imaging and Use of Machine Learning to Discriminate Nasal and Paranasal Sinus Small Round Malignant Cell Tumors
    Chen, Chen
    Qin, Yuhui
    Cheng, Junying
    Gao, Fabao
    Zhou, Xiaoyue
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [44] Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas
    Khanna, Omaditya
    Kazerooni, Anahita Fathi
    Farrell, Christopher J.
    Baldassari, Michael P.
    Alexander, Tyler D.
    Karsy, Michael
    Greenberger, Benjamin A.
    Garcia, Jose A.
    Sako, Chiharu
    Evans, James J.
    Judy, Kevin D.
    Andrews, David W.
    Flanders, Adam E.
    Sharan, Ashwini D.
    Dicker, Adam P.
    Shi, Wenyin
    Davatzikos, Christos
    NEUROSURGERY, 2021, 89 (05) : 928 - 936
  • [45] A non-invasive, automated diagnosis of Meniere's disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
    van der Lubbe, Marly F. J. A.
    Vaidyanathan, Akshayaa
    de Wit, Marjolein
    van den Burg, Elske L.
    Postma, Alida A.
    Bruintjes, Tjasse D.
    Bilderbeek-Beckers, Monique A. L.
    Dammeijer, Patrick F. M.
    Vanden Bossche, Stephanie
    Van Rompaey, Vincent
    Lambin, Philippe
    van Hoof, Marc
    van de Berg, Raymond
    RADIOLOGIA MEDICA, 2022, 127 (01): : 72 - 82
  • [46] A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
    Marly F. J. A. van der Lubbe
    Akshayaa Vaidyanathan
    Marjolein de Wit
    Elske L. van den Burg
    Alida A. Postma
    Tjasse D. Bruintjes
    Monique A. L. Bilderbeek-Beckers
    Patrick F. M. Dammeijer
    Stephanie Vanden Bossche
    Vincent Van Rompaey
    Philippe Lambin
    Marc van Hoof
    Raymond van de Berg
    La radiologia medica, 2022, 127 : 72 - 82
  • [47] Identifying etiologies of heart failure using non-contrast cardiac magnetic resonance imaging: cine imaging, T1 and T2 mapping, and texture analysis for T1 mapping
    Amano, Yasuo
    Suzuki, Yasuyuki
    Tang, Xiaoyan
    Ando, Chisato
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2025, 11
  • [48] Response to the letter to the editor on the article: a non-invasive, automated diagnosis of Meniere's disease using radiomics and machine learning on conventional magnetic resonance imaging-a multicentric, case-controlled feasibility study
    van der Lubbe, Marly F. J. A.
    Vaidyanathan, Akshayaa
    de Wit, Marjolein
    van den Burg, Elske L.
    Postma, Alida A.
    Bruintjes, Tjasse D.
    Bilderbeek-Beckers, Monique A. L.
    Dammeijer, Patrick F. M.
    Bossche, Stephanie Vanden
    Van Rompaey, Vincent
    Lambin, Philippe
    van Hoof, Marc
    van de Berg, Raymond
    RADIOLOGIA MEDICA, 2022, 127 (09): : 1059 - 1061
  • [49] Response to the letter to the editor on the article: a non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging—a multicentric, case-controlled feasibility study
    Marly F. J. A. van der Lubbe
    Akshayaa Vaidyanathan
    Marjolein de Wit
    Elske L. van den Burg
    Alida A. Postma
    Tjasse D. Bruintjes
    Monique A. L. Bilderbeek-Beckers
    Patrick F. M. Dammeijer
    Stephanie Vanden Bossche
    Vincent Van Rompaey
    Philippe Lambin
    Marc van Hoof
    Raymond van de Berg
    La radiologia medica, 2022, 127 : 1059 - 1061
  • [50] NON-INVASIVE IN VIVO SIGNATURE OF IDH1 MUTATIONAL STATUS IN HIGH GRADE GLIOMA, FROM CLINICALLY-ACQUIRED MULTI-PARAMETRIC MAGNETIC RESONANCE IMAGING, USING MULTIVARIATE MACHINE LEARNING
    Bakas, Spyridon
    Rathore, Saima
    Nasrallah, MacLean
    Akbari, Hamed
    Binder, Zev
    Ha, Sung Min
    Mamourian, Elizabeth
    Morrissette, Jennifer
    O'Rourke, Donald
    Davatzikos, Christos
    NEURO-ONCOLOGY, 2018, 20 : 184 - 185