Vanadium Oxide Cathode Coinserted by Ni2+ and NH4 + for High-Performance Aqueous Zinc-Ion Batteries

被引:1
|
作者
Shen, Sijin [1 ,2 ]
Li, Yali [1 ,2 ]
Dong, Yunxia [1 ,2 ]
Hu, Jidong [1 ,2 ]
Chen, Yongchao [1 ,2 ]
Li, Donghao [1 ,2 ]
Ma, Hongyun [1 ,2 ]
Fu, Yujun [1 ,2 ]
He, Deyan [1 ,2 ]
Li, Junshuai [1 ,2 ]
机构
[1] Lanzhou Univ, LONGi Inst Future Technol, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Sch Mat & Energy, 222 South Tianshui Rd, Lanzhou 730000, Peoples R China
关键词
aqueous zinc-ion batteries; vanadium-based oxide cathodes; high capacity; high energy density; long-termcycle stability; Ni2+/NH4 (+) coinsertion; CYCLING STABILITY; AMMONIUM VANADATE; PREINTERCALATION; POLYANILINE; ELECTRODES; PROGRESS;
D O I
10.1021/acsami.3c18754
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Vanadium-based oxides have garnered significant attention as cathode materials for aqueous zinc-ion batteries (AZIBs) because of their high theoretical capacity and low cost. However, the limited reaction kinetics and poor long-term cycle stability hinder their widespread application. In this paper, we propose a novel approach by coinserting Ni2+ and NH4+ ions into V2O5<middle dot>3H(2)O, i.e., NNVO. Structural characterization shows that the coinsertion of Ni2+ and NH4+ not only extends the interlayer spacing of V2O5<middle dot>3H(2)O but also significantly promotes the transport kinetics of Zn2+ because of the synergistic "pillar" effect of Ni2+ and NH4+, as well as the increased oxygen vacancies that effectively lower the energy barrier for Zn2+ insertion. As a result, the AZIBs with an NNVO electrode exhibit a high capacity of 398.1 mAh g(-1) (at 1.0 A g(-1)) and good cycle stability with 89.1% capacity retention even after 2000 cycles at 5.0 A g(-1). At the same time, a highly competitive energy density of 262.9 Wh kg(-1) is delivered at 382.9 W kg(-1). Considering the simple scheme and the resultant high performance, this study may provide a positive attempt to develop high-performance AZIBs.
引用
收藏
页码:8922 / 8929
页数:8
相关论文
共 50 条
  • [11] Aluminium-doped vanadium nitride as cathode material for high-performance aqueous zinc-ion batteries
    Chen, Jiangjin
    Guo, Keyan
    Ren, Tianzi
    Feng, Guodong
    Guo, Wen
    Bao, Fuxi
    Journal of Power Sources, 2025, 626
  • [12] Zinc Vanadium Oxide Nanobelts as High-Performance Cathodes for Rechargeable Zinc-Ion Batteries
    Venkatesan, R.
    Bauri, Ranjit
    Mayuranathan, Kishore Kumar
    ENERGY & FUELS, 2022, 36 (14) : 7854 - 7864
  • [13] Metal-ion inserted vanadium oxide nanoribbons as high-performance cathodes for aqueous zinc-ion batteries
    Yu, Liangmin
    Yamauchi, Yusuke
    Wang, Jie
    Pang, Zhibin
    Ding, Bing
    Wang, Yanjian
    Xu, Li
    Zhou, Long
    Jiang, Xiaohui
    Yan, Xuefeng
    Hill, Jonathan P.
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [14] Electrochemical Activation in Vanadium Oxide with Rich Oxygen Vacancies for High-Performance Aqueous Zinc-Ion Batteries
    Liang, Fangan
    Chen, Min
    Zhang, Shuchao
    Zou, Zhengguang
    Ge, Chuanqi
    Jia, Shengkun
    Le, Shangwang
    Yu, Fagang
    Nong, Jinxia
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (13) : 5117 - 5128
  • [15] K+-regulated vanadium oxide heterostructure enables high-performance aqueous zinc-ion batteries
    Li, Haibing
    Zhu, Liyun
    Fan, Weijun
    Xiao, Yi
    Wu, Jiadong
    Mi, Hongyu
    Zhang, Fumin
    Yang, Linyu
    CrystEngComm, 2024, 27 (02) : 191 - 201
  • [16] Porous cubic MnCo 2 O 4 as a high-performance cathode material for aqueous zinc-ion batteries
    Wu, Yujuan
    Hu, Yingying
    Zhao, Pei
    Zhang, Huihui
    Wang, Ruilin
    Mao, Yiyang
    Wang, Mengbo
    Yang, Ziwen
    Zhang, Xinlei
    Ding, Kun
    Guo, Yong
    Zhang, Qianjun
    Xu, Lianyi
    Wang, Baofeng
    SOLID STATE IONICS, 2024, 411
  • [17] Layered (NH4)2V6O16•1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries
    Wang, Xiao
    Xi, Baojuan
    Feng, Zhenyu
    Chen, Weihua
    Li, Haibo
    Jia, Yuxi
    Feng, Jinkui
    Qian, Yitai
    Xiong, Shenglin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) : 19130 - 19139
  • [18] Structural Engineering of Vanadium Oxide Cathodes by Mn2+ Preintercalation for High-Performance Aqueous Zinc-Ion Batteries
    Li, Fengfeng
    Sheng, Hongwei
    Ma, Hongyun
    Qi, Yifeng
    Shao, Mingjiao
    Yuan, Jiao
    Li, Wenquan
    Lan, Wei
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 6201 - 6213
  • [19] Layered Ni0.22V2O5•nH2O as high-performance cathode material for aqueous zinc-ion batteries
    Wei, Min
    Luo, Wen
    Yu, Danrui
    Liang, Xiao
    Wei, Wei
    Gao, Mingrui
    Sun, Shuokun
    Zhu, Quanyao
    Liu, Guoquan
    IONICS, 2021, 27 (11) : 4801 - 4809
  • [20] Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries
    Liu, Gangyuan
    Xiao, Yao
    Zhang, Wenwei
    Tang, Wen
    Zuo, Chunli
    Zhang, Peiping
    Dong, Shijie
    Luo, Ping
    NANOTECHNOLOGY, 2021, 32 (31)