Innovative Energy Approach for Design and Sizing of Electric Vehicle Charging Infrastructure

被引:1
|
作者
Martini, Daniele [1 ]
Aimar, Martino [1 ]
Borghetti, Fabio [2 ]
Longo, Michela [1 ]
Foiadelli, Federica [1 ]
机构
[1] Politecn Milan, Dept Energy, Via La Masa 34, I-20156 Milan, Italy
[2] Politecn Milan, Design Dept, Mobil & Transport Lab, Via Candiani 72, I-20158 Milan, Italy
关键词
sustainable transport; transport management; mobility; transport decarbonization; electric vehicles; sustainable mobility; transportation planning; charging stations; charging infrastructure; energy policy; distribution network; TRAVEL;
D O I
10.3390/infrastructures9010015
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In Italy, the availability of service areas (SAs) equipped with charging stations (CSs) for electric vehicles (EVs) on highways is limited in comparison to the total number of service areas. The scope of this work is to create a prototype and show a different approach to assessing the number of inlets required on highways. The proposed method estimates the energy requirements for the future electric fleet on highways. It is based on an energy conversion that starts with the fuel sold in the highway network and ends with the number of charging inlets. A proposed benchmark method estimates energy requirements for the electric fleet using consolidated values and statistics about refueling attitudes, with factors for range correction and winter conditions. The results depend on assumptions about future car distribution, with varying numbers of required inlets. The analysis revealed that vehicle traffic is a critical factor in determining the number of required charging inlets, with significant variance between different SAs. This study highlights the necessity of incorporating factors like weather, car charging power, and the future EV range into these estimations. The findings are useful for planning EV charging infrastructure, especially along major traffic routes and in urban areas with high-range vehicles relying on High-Power DC (HPDC) charging. The model's applicability to urban scenarios can be improved by considering the proportion of energy recharged at the destination. A key limitation is the lack of detailed origin-destination (OD) highway data, leading to some uncertainty in the calculated range ratio coefficient and underscoring the need for future research to refine this model.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimal Siting and Sizing of Electric Vehicle Energy Supplement Infrastructure in Highway Networks
    Jin, Ding
    Zhang, Huayu
    Han, Bing
    Liu, Gang
    Xue, Fei
    Lu, Shaofeng
    INVENTIONS, 2023, 8 (05)
  • [22] The future of electric vehicle charging infrastructure comment
    Afridi, Khurram
    NATURE ELECTRONICS, 2022, 5 (02) : 62 - 64
  • [23] Functional Safety and Electric Vehicle Charging: Requirements Analysis and Design for a Safe Charging Infrastructure System
    Kivelae, Tommi
    Abdelawwad, Mohamed
    Sperling, Marvin
    Drabesch, Malte
    Schwarz, Michael
    Boercsoek, Josef
    Furmans, Kai
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS (VEHITS), 2021, : 317 - 324
  • [24] Lightning Protection of Electric Vehicle Charging Infrastructure
    Zhao, Jing
    Zhang, Hongwen
    Lu, Qiang
    Xu, Changquan
    Yang, Guohua
    2016 33RD INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION (ICLP), 2016,
  • [25] Impact of public electric vehicle charging infrastructure
    Levinson, Rebecca S.
    West, Todd H.
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2018, 64 : 158 - 177
  • [26] Smart Electric Vehicle Charging Infrastructure Overview
    Chynoweth, Joshua
    Chung, Ching-Yen
    Qiu, Charlie
    Chu, Peter
    Gadh, Rajit
    2014 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2014,
  • [27] Electric vehicle charging infrastructure: positioning in India
    Kore, Hemant Harishchandra
    Koul, Saroj
    MANAGEMENT OF ENVIRONMENTAL QUALITY, 2022, 33 (03) : 776 - 799
  • [28] Electric Vehicle Charging Station Infrastructure: A Review
    Jog, Pranjal
    Shete, Suwarna
    Kumawat, R. K.
    Palwalia, D. K.
    6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,
  • [29] A method for electric vehicle charging infrastructure planning
    Wu, Chunyang
    Li, Canbing
    Du, Li
    Cao, Yijia
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2010, 34 (24): : 36 - 39
  • [30] ANALYSIS ON ELECTRIC VEHICLE CHARGING INFRASTRUCTURE IN LATVIA
    Putnieks, Uldis
    Gailis, Maris
    Kancevica, Liene
    11TH INTERNATIONAL SCIENTIFIC CONFERENCE ON ENGINEERING FOR RURAL DEVELOPMENT, VOL 11, 2012, : 400 - 405