共 50 条
Sustainable production of green hydrogen, electricity, and desalinated water via a Hybrid Solar Chimney Power Plant (HSCPP) water-splitting process
被引:13
|作者:
Abdelsalam, Emad
[1
]
Almomani, Fares
[2
]
Alnawafah, Hamza
[3
]
Habash, Dareen
[1
]
Jamjoum, Mohammad
[1
]
机构:
[1] Al Hussein Tech Univ, Elect & Energy Engn Dept, Amman 11831, Jordan
[2] Qatar Univ, Chem Engn Dept, Doha, Qatar
[3] Univ Wisconsin Milwaukee, Mech Engn Dept, Milwaukee, WI 53211 USA
关键词:
Green hydrogen(GRH2);
Solar energy;
Hydrogen;
Solar chimney;
Cooling tower;
Disalinated water (Woes);
OXIDE STEAM ELECTROLYZER;
RENEWABLE ENERGY-SOURCES;
PARTIAL OXIDATION;
TRANSPORT;
MODEL;
PERFORMANCE;
CHALLENGES;
INSIGHTS;
METHANE;
CYCLE;
D O I:
10.1016/j.ijhydene.2023.06.165
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
This work presents a novel sustainable approach to producing desalinated water (Wdes), green hydrogen (GH2) and electrical energy (Eelc) using Hybrid Solar Chimney Power Plant (HSCPP) coupled with a water-splitting (WatSp) process. The HSCPP consists of a collector, absorber, chimney, bidirectional turbine outfitted with a seawater pool, and water elec-trolysis (Watelc) cell. The HSCPP harnesses solar energy to heat the air under the collector creating air movement within the structure, passing the bidirectional turbine, and pro-ducing Eelc. Sprinklers were fitted within the structure to operate the HSCPP as a cooling tower (CT) in the absence of solar radiation (Solirr). The Watelc cell directly uses the produced Eelc for the production of Hydrogen (PH2) and oxygen (PO2), while the condensed water at the chimney's inner walls was also collected as Wdes. Results revealed that the continuous operation of the HSCPP has an average annual Eelc of 633 +/- 10 MWh that could be efficiently used to generate 21,653 kg of GRH2, 173,244 kg of O2 as well as 190,863 tons of Wdes. The overall efficiency of the HSCPP for the PH2 was found to be 18:5%, which is higher than Solar PV (max-6%) and geothermal Rankine (max-15%). These high efficiencies rank this technology as competitive with other renewable hydrogen production technologies. In conclusion, HSCPP has a promising future as a novel and sustainable solar tower technology to produce hydrogen.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1356 / 1369
页数:14
相关论文