PARAMETERS IDENTIFICATION ALGORITHM FOR THE SUSUPLUME AIR POLLUTION PROPAGATION MODEL

被引:0
|
作者
Elsakov, S. M. [1 ]
Drozin, D. A. [1 ]
Zamyshlyaeva, A. A. [1 ]
Basmanov, A. P. [2 ]
Surin, V. A. [1 ]
Herreinstein, A. V. [1 ]
Nitskaya, S. G. [1 ]
机构
[1] South Ural State Univ, Chelyabinsk, Russia
[2] LLC MMK Informserv, Magnitogorsk, Russia
关键词
SUSUPLUME model; global optimization; ecology; propagation of pollutants in the atmosphere;
D O I
10.14529/mmp230306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article presents the method of identifying the parameters of a dynamic dispersion calculation model SUSUPLUME. It is supposed that the model parameters contain not only the characteristics of the atmosphere and the pollutant, but also information about the influence of other particular conditions such as terrain, building, background, etc. The model parameters are configured based on instrumental measurements of concentrations of pollutants in the atmospheric air in the surface layer (2 meters above ground level). Three identification strategies are considered: identification of parameters by all measurements, identification of parameters by measurements of a given source and identification of parameters using another approved model. A method for weighing these strategies is proposed in the issue. The article also provides objective functions for optimization criteria, an acceptable set of parameters, an algorithm for solving an optimization problem, a decision tree of a feasible set and a global optimization algorithm.
引用
收藏
页码:74 / 82
页数:9
相关论文
共 50 条
  • [41] A new iterative identification algorithm for estimating the LuGre friction model parameters
    Mahmoudkhani, Saeed
    Gorenstein, Johnathan
    Ahmadi, Keivan
    Mechanism and Machine Theory, 2024, 203
  • [42] Hybrid GA-ACO Algorithm for a Model Parameters Identification Problem
    Fidanova, Stefka
    Paprzycki, Marcin
    Roeva, Olympia
    FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2014, 2014, 2 : 413 - 420
  • [43] FPGA Based Implementation of a Genetic Algorithm for ARMA Model Parameters Identification
    Merabti, Hocine
    Massicotte, Daniel
    GLSVLSI'14: PROCEEDINGS OF THE 2014 GREAT LAKES SYMPOSIUM ON VLSI, 2014, : 95 - 96
  • [44] Photovoltaic model parameters identification using Northern Goshawk Optimization algorithm
    El-Dabah, Mahmoud A.
    El-Sehiemy, Ragab A.
    Hasanien, Hany M.
    Saad, Bahaa
    ENERGY, 2023, 262
  • [45] Fuzzy Hammerstein model and its parameters identification using genetic algorithm
    Liutkevicius, Raimundas
    Dainys, Saulius
    Electrical and Control Technologies, Proceedings, 2006, : 195 - 200
  • [46] Algorithm for Solving the Model of Multistage Hollow Fiber Membrane Systems and the Identification of Model Parameters
    Umarova, Zhanat
    INFORMATICS ENGINEERING AND INFORMATION SCIENCE, PT I, 2011, 251 : 466 - 476
  • [47] Air pollution prevention and pollution source identification of chemical industrial parks
    Yang, Shuang-Hua
    Chen, Jian-Meng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 159 : 992 - 995
  • [48] Seasonal Air Pollution Investigation and Relation Analysis of Air Pollution Parameters to Meteorological Data (Kocaeli/Turkey)
    Erener, Arzu
    Sarp, Gulcan
    Yildirim, Ozge
    ADVANCES IN REMOTE SENSING AND GEO INFORMATICS APPLICATIONS, 2019, : 355 - 358
  • [49] Back-propagation algorithm to estimate the parameters of auto-regressive exogenous model
    Xu, Tianyang
    Chen, Jing
    Rong, Yingjiao
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2021, 37 (3-4) : 224 - 231
  • [50] Inversion and identification of groundwater pollution sources based on surrogate model and flow direction algorithm
    Luo, Cheng-Ming
    Lu, Wen-Xi
    Pan, Zi-Dong
    Wang, Zi-Bo
    Xu, Ya-Ning
    Bai, Yu-Kun
    Zhongguo Huanjing Kexue/China Environmental Science, 2023, 43 (11): : 5823 - 5832