Influence of B4C Particle Size on the Microstructure and Mechanical Properties of B4C/Al Composites Fabricated by Pressureless Infiltration

被引:2
|
作者
Liu, Yao [1 ,2 ]
Peng, Haokai [2 ]
Wei, Longjun [1 ,2 ]
Peng, Hao [1 ,2 ]
Ma, Donglin [3 ]
Leng, Yongxiang [1 ,2 ]
机构
[1] Southwest Jiaotong Univ, Coll Med, Sichuan Prov Int Sci & Technol Cooperat Base Funct, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
[3] Chengdu Normal Univ, Coll Phys & Engn, Chengdu 611130, Peoples R China
关键词
pressureless infiltration; B4C/Al composites; B4C particle size; mechanical properties; MATRIX COMPOSITES; BORON-CARBIDE; AL; BEHAVIOR; FRACTURE; TI;
D O I
10.3390/met13081358
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To investigate the effect of B4C particle size on the microstructure and mechanical properties of B4C/Al composites, and to provide theoretical guidance for the subsequent thermal processing of composites, B4C/Al composites with varying B4C particle sizes (0.2 mu m, 0.5 mu m, 1 mu m, 10 mu m) were fabricated using pressureless infiltration. The microstructure of the composites was characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the mechanical properties were analyzed by hardness test, three-point bending and high temperature compression. The results indicated that Al3BC and AlB2 were the primary interfacial reaction products in B4C/Al composites, and interface reaction could be alleviated with increasing particle size. B4C/Al composites with larger B4C particle sizes exhibited a relatively uniform and discrete distribution of B4C, while those with smaller B4C particle sizes showed agglomeration of B4C. The Vickers hardness and peak flow stress of B4C/Al composites gradually decreased with the increase of B4C particle size, while the bending strength, flexural modulus, and fracture toughness tended to increase. In addition, when B4C particle size was 10 mu m, the composites displayed optimal comprehensive performance with the lowest peak flow stress (150 MPa) and the highest fracture toughness (12.75 MPa.m(1/2)).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Microstructure and mechanical properties of B4C/6061Al laminar composites fabricated by power metallurgy
    Chen, Hong-sheng
    Wang, Wen-xian
    Nie, Hui-hui
    Zhou, Jun
    Li, Yu-li
    Zhang, Peng
    VACUUM, 2017, 143 : 363 - 370
  • [22] Microstructure and mechanical properties of Al-7075/B4C composites fabricated by plasma activated sintering
    Shen, Qiang
    Wu, Chuandong
    Luo, Guoqiang
    Fang, Pan
    Li, Chenzhang
    Wang, Yiyu
    Zhang, Lianmeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 588 : 265 - 270
  • [24] Microstructure and Mechanical Properties of B4C - C Ceramic
    Xi'an Jiaotong University, Xi'an 710049, China
    不详
    Xiyou Jinshu Cailiao Yu Gongcheng, 3 (154):
  • [25] Phase transformation and mechanical properties of B4C/Al composites
    Zhang L.
    Shi G.
    Xu K.
    Hao W.
    Li Q.
    Junyan W.
    Wang Z.
    Wang, Zhi (wangzhi@ujn.edu.cn), 1600, Elsevier Editora Ltda (09): : 2116 - 2126
  • [26] Mechanical Properties and Corrosion Kinetics of B4C/Al Composites
    Zhang, Liu
    Wang, Xiao
    Dong, Mengqi
    Qian, Qinghua
    Yang, Zirun
    JOM, 2025,
  • [27] Phase transformation and mechanical properties of B4C/Al composites
    Zhang, Liu
    Shi, Guopu
    Kun, Xu
    Wu, Hao
    Li, Qinggang
    Wu, Junyan
    Wang, Zhi
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (02): : 2116 - 2126
  • [28] Examination of wear properties of Al/B4C composites reinforced with irregularly shaped B4C
    Topcu, Ismail
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2021, 22 (03): : 276 - 282
  • [29] Reaction products of Al-Mg/B4C composite fabricated by pressureless infiltration technique
    Lee, KB
    Sim, HS
    Cho, SY
    Kwon, H
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 302 (02): : 227 - 234
  • [30] Microstructure and mechanical properties of B4C/2024Al functionally gradient composites
    Chao, Z.L.
    Wang, Z.W.
    Jiang, L.T.
    Chen, S.P.
    Pang, B.J.
    Zhang, R.W.
    Du, S.Q.
    Chen, G.Q.
    Zhang, Q.
    Wu, G.H.
    Materials and Design, 2022, 215