The subdivision-based IGA-EIEQ numerical scheme for the Cahn-Hilliard-Darcy system of two-phase Hele-Shaw flow on complex curved surfaces

被引:1
|
作者
Pan, Qing [1 ]
Huang, Yunqing [2 ]
Chen, Chong [3 ]
Yang, Xiaofeng [4 ]
Zhang, Yongjie Jessica [3 ,5 ]
机构
[1] Changsha Univ Sci & Technol, Natl Ctr Appl Math Hunan, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
[2] Xiangtan Univ, Natl Ctr Appl Math Hunan, Xiangtan 411105, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[4] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[5] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
IGA-EIEQ; Fully-decoupled; Unconditional energy stability; Cahn-Hilliard; Darcy; FINITE-ELEMENT-METHOD; PHASE-FIELD MODEL; ISOGEOMETRIC ANALYSIS; MINIMAL-SURFACES; STABLE SCHEME; ENERGY; 2ND-ORDER; APPROXIMATIONS; TIME; ALGORITHMS;
D O I
10.1016/j.cma.2023.116709
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the numerical approximation of a two-phase Hele-Shaw fluid flow system, which consists of a phase-field Cahn-Hilliard model coupled with the Darcy flow, confined on a complex curved surface. To avoid geometric errors caused by the surface approximation and additional approximation errors introduced by numerical methods, for spatial discretization, we consider the recently developed strategy of subdivision-based isogeometric analysis (IGA), where we can accurately represent complex surfaces of arbitrary topology due to its high smoothness and hierarchical refinement properties. By incorporating multiple methods of temporal discretizations, including the Explicit-Invariant-Energy-Quadratization (EIEQ) approach for linearizing nonlinear potentials, the Zero-Energy-Contribution (ZEC) method for decoupling of nonlinear couplings, and the projection method for decoupling of linear couplings between the fluid velocity and pressure, and the finite-element method based on IGA for spatial discretizations, we arrive at a fully discrete scheme that possesses desirable properties such as decoupling, linearity, second-order accuracy in time, and unconditional energy stability. At each time step, only several elliptic equations with constant coefficients are needed to be solved. We also present the rigorous proof of unconditional energy stability, accompanied by numerous numerical examples to verify the stability and accuracy of the numerical scheme, such as the Saffman-Taylor fingering instability occurring on various complex curved surfaces induced by rotational forces.
引用
收藏
页数:19
相关论文
共 12 条